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A. THEORETICAL DESCRIPTION

We first give a description of 3D-confined cavity optomechanics.
Next, we connect to the description of 2D-confined waveguides.

A. Cavities: 3D-confined

We focus on cavity optomechanics [1] in this section although
much of it applies to electromechanics as well. The dynamics
of an optomechanical system involves taking into account the
interplay between the coupled acoustic and optical degrees of
freedom in a system. The frequencies of these two coupled
degrees of freedom are typically different by many orders of
magnitude so that the only physical significant coupling arises
parametrically in the form described below. As a first step,
a modal decomposition of time varying deformations in the
elastic structure is considered, so a set of parameters xj(t), each
encoding the deformation due to a particular vibrational mode
is considered. A similar decomposition of Maxwell’s equations
leads to a set of electromagnetic modes of the structure with
amplitudes «;(t), which with the correct normalization would
lead to U; = fiw,|aj|* being the energy and |«;|? the average
photon number in mode j. Each optical (mechanical) mode of the
structure has a frequency w, (wm) and their associated dynamics.
At first we will only consider the interaction between two modes:

a single optical and a single mechanical mode of the structure.
Optomechanical interactions give rise to coupling between these
modes in the following way: the deformation of the structure in
a specific vibrational mode parametrized by x, causes a change
in the optical frequency given by w,(x) = wo(0) + Gx, where
the optomechanical coupling parameter G = 0yw, has units
of Hz - m~!. The modal equation for the electromagnetic field,
under laser excitation at frequency wi, = wo(0) — A with input
photon flux given by |a;y|? is then expressed as

do(t .
O;(t) = (1(A+Gx)+g)a*\/@“in~ @

The cavity decay rate « represents the full-width half-maximum
(FWHM) of the optical mode excitation spectrum and contains
all decay channels coupling to the photonic system. Typically, «
consists of an engineered extrinsic decay rate xex as well as the
intrinsic loss rate xj,.

A.1. Linear detection of motion

First, we consider how motion is detected optically in such a
setup, completely ignoring at first the effect of the light on the
mechanical system. We make a few approximations for this
particular analysis that are useful though not generally valid.
First we assume that x(t) is slow compared to optical bandwidth
x, or equivalently wy < k. Also we assume that the laser field is
driving the photonic cavity on resonance so A = 0, and that the
optical decay rate is dominated by the out-coupling so k¥ = Kex.
The output field is then given by aout = ay, + +/xa, which for
oscillations that are small, i.e. when the laser-cavity detuning is
being modulated by the motion within the linear region of the
cavity phase response such that Gx < «, can be solved to obtain
a relation representing phase modulation of the output field:
dout = —in(1 — i4Gx(t)/x). This is a first order expansion
of e~(*) where ¢(t) = Gx(t)/x. An alternate way of writing
this expression is in terms of the intracavity field a(t) which,
neglecting the mechanical motion, is given by &« = —2a3,/ /.



The output field is then
Xout = —in — v/ T'measX/ Xzp ¥))
with the measurement rate defined as
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being the rate at which photons are scattered from the laser beam
to sidebands due to motion of amplitude x,p and an intracavity
optical field intensity of ||, The subscript represents zero-point,
assigned in anticipation of the quantum analysis below though
for a classical description x,p can be used to normalize the above
expression without changing the physics. The measurement rate
as defined here is central to understanding the operation of
optomechanical systems in the linear regime and will be used
throughout the text below often denoted alternatively as yom =
LFoM = I'meas- The zero-point coupling rate g = Gx,p defined
here is consistent with the main text.

A.2. Back-action on the mechanical mode

Now we consider how the motion of the mechanical system
is modified due to interaction with the optical field resonating
in the structure. In addition to equation 1, to understand the
back-action arising from the interplay between the optical field
and mechanical motion, we must consider the dynamics of the
motional degree of freedom:

£(t) 4 YinX + wmx = (Fa(t) + Finput () /Megs. @

The left-hand side of the above equation is simply the equation of
motion for a damped harmonic oscillator and takes into account
the dynamics of the modal degree of freedom being considered.
The right-hand side of the equation are the forcing terms: Fga (¢)
is the optical back-action, while Fmput(t) is an input force which
we use to understand the linear response of the mechanical
system. The back-action force is given by radiation pressure
described via the Maxwell stress tensor, which is quadratic in
the field or proportional to |#|?. By considering the total energy
of the system (see section A.3), we find that Fga (t) = 7G|a(t)|*.
Equations 1 and 4 now describe the dynamics of the coupled
system and can be solved to obtain the effects of back-action in
the classical domain. In particular, we are primarily interested in
the modification of the linear response of the mechanical system
to an input force, i.e. changes to its damping rate and frequency.
These changes come about from the mechanical motion x modi-
fying the intracavity field a(f) which then applies a force back
onto x which can be proportional, lagging, or leading, leading
to a redefinition of the mechanical system’s complex frequency.
To calculate the laser power and frequency dependence of these
modifications, we choose an operating point (@, X) and linearize
the equations of motion by taking to account only the dynamics
of the fluctuations dx(t) and da(t). This gives us a set of three
coupled linear differential equations

Sk(t) = —w20x — Yindx +
hG(@*da + c.c.) /Megs + Finput(t) /Megs ~ (5)
Si(t) = —(iA+x/2)0a —iGadx — \/KexOtkin (6)
Sa*(t) = (iA—1x/2)oa" +iGa*ox — \/Kexboly, (7)

which can be solved for input forces Fmput(t) taking dnj, = 0
for now. Solving these equations in the Fourier domain, we ob-
tain an expression for the small-signal response of the mechan-
ical system to the input force in terms of a dispersion relation,

0x(w) = Xx(w)Finput(w), with

1
X = . 7 8
X (W) meff(wrzn —w? — 1W%Yin + Zopt(w)) ®
where
Yopt(w) = —ihGa| (xa(w) — xi(—w)) /megg  (9)

and x4 (w) = (i(A — w) +x/2)~ ! is the optical resonance re-
sponse function. The expression in equation 8 represents the
response of a damped mechanical resonance that is modified by
a “self-energy” term, Zopt (w), due to interaction with optical res-
onance. The real and imaginary parts of this self-energy cause an
effective modification of the mechanical frequency and linewidth
wm and 7yjn. This shift in the complex frequency, often referred
to as the “optical spring” and “optical damping/amplification”
effects can be expressed succinctly in terms of opt(w):

ImZgpt (w
YoM =~ _ =opti@m) Z}jt( m),and (10)
m
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Swm M_ (11)
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These expression are good approximations in the weak-coupling
regime (g < « + 7). In the strong-coupling regime (g > x + ),
the full frequency-dependence of the self-energy Xopt (w) should
be considered.

A common mode of operation of optomechanical systems
that are sideband-resolved (wm > «) is to tune the laser approx-
imately a mechanical frequency to the red side of the optical
resonance so A = wn,. In this case, the above relations lead us
to yom =~ 2hG2[&|?/ (kmegwm) = 4G2x§p|R|Z/K which is seen
to be equal to the measurement rate calculated in equation 3,
though that was for a different regime of operation. The equality
of these two rates can be understood as such: with the red-
detuned scheme of driving, all of the sideband scattering, which
occurs at rate I'meas, causes up-shifting of the laser photons into
the photonic mode, and thus effectively damps the mechanical
resonator’s motion. In the above we focused on the effect of
the optomechanical interaction on the mechanical resonator’s re-
sponse function. However, there are equally important changes
in the electromagnetic response. These effects, including Bril-
louin gain/loss and slow /fast light, can be derived similarly [2]
(section B).

A.3. Understanding optomechanical coupling in a nanophotonic sys-
tem

In the previous section we studied how optomechanical cou-
pling can be used to detect mechanical motion and modify the
linear response of a mechanical resonator. Here we will see
how such an interaction comes about in a realistic nanophotonic
system. Though a toy model with a one-dimensional scalar
wave-equation and a simplified mass-spring system has long
been used in studying optomechanical systems, obtaining a
precise understanding of the coupling rates given nontrivial
wavelength-scale optical and elastic mode profiles requires care-
ful consideration of the fields and calculation of the interactions.
The goal of this section is to show how we can obtain equations
similar to equations 5-7 where x () and a () now represent mode
amplitudes for acoustic and optical excitations in a nanopho-
tonic device.

We start by solving separately the dynamical equations for
electromagnetics and elastodynamics which can be expressed



as eigenvalue equations for the magnetic field H(r) and elastic
displacement field Q(r) respectively:

Lh; = w]Zh]-, L(-) = ccurl Le(—i)curl (- )} . (12)
wfQj(r) = LQj(r)
L) = =299 () - Eve).

The set of solutions of these two equations are the normal elec-
tromagnetic and acoustic modes of the structure, and define the
spectrum. Typically, a software package such as COMSOL is
used to obtain these solutions in dielectric structures that don’t
permit analytic analysis. Valid solutions of the electromagnetic
and elastic field in the structure can then be expressed as normal
mode expansions

E(rt) = Ze t) +hec., (14)
Qrt) = ZQk t) +he. (15)
with 4;(t) = —iwja;(t), and bp(t) = —iwihe(t). In defining

the quantum field theory, we assign to each mode j a Hilbert
space {|n)j, n=20,1,2,3,.} where |n)] is the state representing
n photons or phonons in the jth mode. Phonons and photons
in each of these Hilbert spaces are then annihilated with the
operators 4; and b; respectively. The normalizations of e; and Qy
in the equations above are then physically significant since, e. g.,
the expectation value of hwjafa]' represents the energy stored in

the jth mode of the electromagnetic field. We can use the classical
expressions for energy in the fields to calculate the energy for
a single photon/phonon above the vacuum state, [¢) = [1);,
which we will then set equal to ficw;:

oy =ulfl, = () [ ar OwpOMIy)
~(vac| [ dr Q(x)p(r)Q(1)|vac)
= 202 / dr Q} (r)p(r)Q(r)
= 2megwimax(|Q;(r)[?]- (16)

where we’ve defined the effective mass and zero-point motion
of the mode to be

Jdr Qj (r)p(r)Q;(r)
max[|Q;(r)[?]

_ _ h
Xgpr,j = max([|Q;(r)[] =,/ m 17

A similar consideration for the electromagnetic fields leads to
Wl [ drE@E@E®IY) -
(vac| / dr E(r)é(r)E(r)|vac)

= Z/dr e;‘(r)é(r)ej(r)
= 2Vegmax[e] (r)é(r)e;(r)]. (18)

and

meff,j =

hwj =Uem =

with

jdre r)é(r)e;(r)

Vit _ , and
1 maxle: (r)e(r)e;(n] "
h .
max]|e;(£)[] = {/ . (19)
/ 2Veit j€diel

Having defined the quantization of the fields and mode nor-
malizations, we can now write a Hamiltonian for the optome-
chanical system,

H=nY wjala;+1) wiblbj +Hin (20)
- :

Ho Hm

that can capture the quantum dynamics. The challenge remains
calculation of the optomechanical interaction term #;,;. We are
interested in interactions of the type a;‘ak(bl + b;r) which are the
simplest type that allow energy conservation, assuming that
the photonic frequencies for mode j and k are many orders of
magnitude larger than the mechanical frequency of mode . For
the case where j = k, we are considering a shift in the frequency
of optical mode j due to a mechanical displacement in mode [.
The relevant interaction energy or rate can be calculated using
first-order cavity perturbation theory. In a dielectric structure
characterized by €(r), modifications due to deformations can
be taken into account with the expression

&(x) = &o(x) + de(r). 1)

To first order, such a modification of the dielectric causes a shift
in the optical resonance frequency of a mode with mode profile

e(r) of

w (e|0ee)

(O R——
w\ = —".
(e|ele)

(22)

There are two ways that the dielectric constant changes due to
this deformation. First, a deformation of the optical resonator
affects the dielectric tensor at the boundaries between different
materials. This is because the high-contrast step profile of €(r)
across a boundary is shifted by deformations of the structure. By
relating a deformation to a change in the dielectric constant, we
can use equation 22 to calculate the optomechanical coupling.
Johnson has derived a useful expression [3] for this shift in
frequency, which when adapted to optomechanics [4], gives a
frequency shift per unit displacement of

~wp [ Qu(x)(aEel |2 — A(eT)|d*2)dA
SOMB =~ 3 (23)
ma><(|Q|) Jé(x)le(r)Pd’r
for a mechanical vector displacement field Q(r) with component
Qy (r) normal to the boundary. Secondly, a photoelastic contribu-
tion to the optomechanical coupling arises from local changes
in the refractive index due to stress in the material induced by
the mechanical deformation. For a particular displacement vec-

tor Q(r) corresponding strain tensor S;; = % <8iQ]- + BjQi>, the
dielectric perturbation is given by

— _ 75 _
se(r) =- P2 % 24)
€0
which reduces to de;; = —egnt Pijki Sk for an isotropic medium

[5, 6]. The fourth-rank tensor p with components Pijki is called



the photoelastic tensor and is a property of the material. The
roto-optic effect, which captures permittivity changes induced
by rotation, must be included as well in optically anisotropic
materials [7-9]. Composite metamaterials may yield enhanced
photoelasticity [9]. Often, when considering the symmetries in
the atomic structure of the material, a reduced tensor is used
with elements p;;. The perturbation integral can then be used to
calculate the shift in frequency per unit displacement:

wp fe-i-edSr

2 max(Q|) [ &(x)[e(r)[2dr’

These expressions give the boundary and photoelastic compo-
nents for a shift in the optical cavity frequency per unit displace-
ment of the maximum deflection point of a deformation profile
Q(r). A natural unit for displacement is the zero-point fluctua-
tion amplitude found by multiplying the expressions (23) and
(25) by the zero-point fluctuation length x,p¢ = /Tt/ (21frm)
(see equation 17). The coupling rate is g9 = g0 Bnd + So,PE, and
the corresponding optomechanical interaction Hamiltonian can
be written as

SOM,PE = (25)

Hine = h(3OM,PE + §OM,Bnd ) ¥4
hgo (bt + b)ata. (26)

Recently, an open-source software tool called “NumBAT” [10]
has been developed to compute the above overlap integrals for
2D-confined structures.

B. Waveguides: 2D-confined

A theory for 2D-confined waveguides with translational sym-
metry can be developed similarly to the previous section on
3D-confined cavities. We refer to [11-13] for a thorough treat-
ment from first principles. Here, we focus on connecting the
waveguides” dynamics to the cavities” dynamics described in the
previous section. For a waveguide the translational symmetry
implies that the photonic and phononic eigenproblems can be
expressed in terms of wavevectors § and K, yielding as solution
dispersion relations w(B) and Q(K). As shown in [11-13], the
Hamiltonian of the waveguide is H = Hree + Hint With the free
Hamiltonian given by

Hpoe = / dp heopalag + / dK hwgblby @7)

and the interaction Hamiltonian given by

h
Hin = / / dpdK (gﬁ+Ka,3bK +8p_xaghl + h.c.> 28)

in the momentum-description where the three-wave mixing
interaction rate gg1 k = o|p+ KocE _ g is proportional to the pump
amplitude ag. g of the mode with wavevector g & K. Here we
assume phase-matching (AK = —fp + &+ K = 0 with B, the
pump wavevector) and usually consider a to represent a strong
pump that can be treated classically.

Previous work [2] linked the waveguide’s coupling rate
8op+k and Brillouin gain coefficient Gp to an optomechanical
cavity’s coupling rate gg via a mean-field transition performed
on the photonic and phononic equations of motion both in the
limit of large and small cavity finesse. Here, we derive the
same connection but now via a mean-field transition in the large-
finesse limit performed directly on the waveguide’s Hamiltonian
given by expression 28. We consider a cavity of roundtrip length

L constructed from a waveguide described by equation 28 and
focus on a triplet of two photonic and one phononic mode(s).
The operator corresponding to the number of excitations in each
of the modes can be expressed as

rke+m/L

o= dkcfey (29)
ke—m/L

27T +
= Tk
with k. a relevant center wavevector. Therefore, the cavity and
waveguide operators are linked by

/2
c= TT[ Ck, (30)

with ¢ either a photonic or phononic ladder operator. Consider-
ing the first term in Hj,;, we therefore have

27\
//d[% dK gpsxapbi = (=) gp+xagb (31)
27
= Tg0‘5+K“ﬁ+K5a§b (32)
= gO\‘ﬁ%K adadb (33)
= goudadb (34)

with éa and db the cavity’s photonic and phononic ladder opera-

tors. Thus we obtain
_ 80|g+K

VL
as in the main text. This link between the coupling rates holds
both for forward and backward as well as for intra- and inter-
modal scattering [2].

Next, we consider the waveguide’s dynamics in slightly more
detail. The dynamics of an optomechanical waveguide is usually
considered after transforming from momentum- to real-space
operators

(35)

dk
c(z) = 5 e”<k’kc)zck (36)

We are usually concerned with narrow bandwidths relative
to the group-velocity-dispersion so the frequencies can be ex-
panded to first-order as

wi = we + vg(k —ke) (37)

A few manipulations [11] starting from equation 27 lead to
Heree = I / dz [ (2)@ua(z) + b (2)0mb(z)|  38)

with @y = wc — ivgd; the real-space operator corresponding
to the momentum-space dispersion relation wy. Higher-order
expansions of the dispersion relation in equation 37 yield higher-
order spatial derivatives the operator ;.

Further, dropping the second term in equation 28 the real-
space interaction Hamiltonian becomes

Hint = h/ dzg0|ﬁ+Koc+(z)a(z)b(z) +h.ec. (39)

Further, the Heisenberg equations of motion ¢(z) =
—£le(z), Hint] together with the equal-time commutator
[c(z),ct(Z)] = 6(z — 2') yield

(0t + vadz) = —iwaa — igopxab
(9¢ +0402)a = —iwaa — igo g4k bt 40
(0t + omd2)b = —iwmb — iggp g a’



These equations describe the spatiotemporal evolution of the
three interacting fields in absence of dissipation and phase-
mismatch. Intrinsic propagation losses can be included via a
dissipative term, e.g.

(01 + Omdz)b = —iwmb — vb — igo|pxxa’ (41)

for the phononic field with v = vpam with Ly, = a;ll the
phononic decay length. Similarly, a non-zero phase-mismatch
AK # 0 effectively reduces the interaction rate. In particular,
dropping the second term for simplicity the momentum-space
interaction Hamiltonian 28 becomes

h " . AKL
Hint = E///dﬁdeﬁp (go‘ﬁpagpaﬁbKLsmc (T) +h.c.)

42)
with L the waveguide length. Thus the finite length weakens the
wavevector-selectivity, generating interactions between a larger
set of modes. The strongest interactions are obtained between
modes for which AK = 0. This corresponds to the real-space
Hamiltonian

Hint = h/ dz go|ﬁ+Kac+(z)a(z)b(z) eE L he  @3)

with AKe = —Bpc + Bc + K¢ the phase-mismatch between the
center wavevectors of the photonic and phononic fields. This
suppresses the interaction in the equations of motion via a rotat-
ing term, for instance

(0¢ + om02)b = —iwmb — igy|, wat e~ iAKE (44)

The range of spatiotemporal effects described by these and ex-
tended versions of these equations of motion are considered in
detail in amongst others [2, 11, 12, 14-19].

B. SINGLE-PHOTON NONLINEARITY

In this section we give a derivation for the relations given at
the end of the perspective on single-photon nonlinearities in the
main text. We consider a 2D-confined waveguide of length L and
inject a photon flux (®) = vg/ L with vg the optical group veloc-
ity that corresponds to one photon on average in the waveguide.
This photon excites the mechanical system with a displacement
x1, which in turn yields a phase-shift ¢\, on a second probe
photon. The phase-shift can be expressed as

l9wg = kO(axneff)le (45)

with ky the vacuum optical wavevector and 0y 1. the sensitivity
of the effective optical index to mechanical motion x;. Assuming
a static displacement, we have x; = (F) /kqg with (F) the force
exerted by the first photon and ke the effective mechanical
stiffness per unit length. In addition, from power-conservation
it can be shown that (F) = %E)xneff(hw)<<l>> [20]. Substitution

leads to 5
hw? (1

l9wg = E (Eaxneff) Z}g (46)

Since the Brillouin gain coefficient can be expressed as [21]
1 2
Gp = 2002 (faxneff> @7)
ket \ €
this yields
h
Og = T2 9B (48)

2 Qm

Making use of the connection [2] discussed in the main text

4g(2)|
B+K
= 4
G vpvs(hw)'y 49)
leads to )
28
g = Sl &
g m

This is the single-photon cross-phase shift for a statically driven
mechanical waveguide. When the mechanics is driven with
a detuning AQ) > v close to the resonance, one must replace
x1 — (wm/ (2AQ)))x1 so the cross-Kerr phase shift increases to

SolpK
+
Owg = —— 1
Y8 0A0 (51)
which is in agreement with more rigorous analysis [22]. This
phase-shift is independent of the waveguide length L since the
photon flux and the optical forces are inversely proportional
to length L when there is on average a single photon in the
waveguide.

Next, we link the waveguide single-photon phase-shift ¢
to the cavity single-photon phase shift

2 2
Beav = % (52)
derived in the main paper. Making use of
80|+K
= (53)
VL
the cavity phase-shift cay can be expressed as
2
_ ok 54)
T LicAQ

with L, the cavity roundtrip length. The cavity finesse is F =
27t/ (xTyt) with Tyy = Lyt/vg the cavity roundtrip time so we
obtain F

19cav = *l9wg (55)
7T

The expression for the cavity phase-shift assumed critical cou-
pling and a small phase shift given by 8.y = 2A/x with
A = Oyg/ Tyt the mechanically-induced detuning from the cavity
resonance.
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