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S1. Derivation of Eqs. (2-3) of the main text

In this section, we derive Eqs. (2-3) of the main text. In the object plane, consider two
monochromatic point source emitters separated by X, each emitting #0 photons. The degree of
(spatial) coherence between the two sources is W. In the Coherent Mode Decomposition (CMD),
the cross-spectral density (CSD),$ (G1, G2) at the object plane is given by

,$ (G1, G2) = #0

2∑
:=1

?:q
∗
: (G1)q: (G2), (S1)

where ?1+?2 = 1, ?1−?2 = W, ?1,2 = (1±W)/2, and q: (G) = 5+ (G)−48: c 5− (G) are the symmetric
(k=1) and antisymmetric (k=2) coherent modes. In the object plane, 5± (G) = [(G ± X/2), where
[(G) are localized functions describing the point sources, and can be considered as regularized
delta functions with a unit intensity integral, such that each source individually emits #0 photons.
Equation (S1) shows that total object plane photon number

∫
3G,$ (G, G) = 2#0 (?1 + ?2) = 2#0

is given by sum of intensities of the symmetric and antisymmetric modes. At the object plane,
these coherent modes are orthogonal. In fact unitary propagation of the field preserves their
orthogonal nature. However, the modes do not remain orthogonal after passing through the
aperture of the imaging system, which is the fundamental cause of the loss of resolution.
Recall that the finite width of the point spread function (PSF) arises due to the nonunitary

nature of the imaging system; the aperture behaves as a low pass filter, blocking photons of spatial
frequencies higher than those determined by the system’s numerical aperture [1]. Consider the
canonical 4 5 imaging system with a Gaussian aperture of width f0? at the Fourier plane. For



simplicity, consider the lenses to be of infinite extent. Since the propagation up to the aperture
is unitary, the number of photons hitting the aperture is 2#0. There are 2#0?1 = #0 (1 + W)
photons in the symmetric and 2#0?2 = #0 (1 − W) photons in the antisymmetric mode hitting
the aperture. At the aperture/Fourier plane, these modes behave like a cosine and sine, each
with spatial frequency 6 = :X/2 5 , where : is the wavenumber and 5 is the focal length [1].
For a large X such that f0?6 � 1, the aperture samples many periods of the coherent modes.
The aperture transmission is then a radiometric factor equal to the ratio f0?/f1, where f1 is
the beam width at the aperture. This factor is same for both the coherent modes in the limit
f0?6 � 1. As X becomes smaller such that f0?6 � 1, the aperture samples less than a fringe
period of the coherent modes. This is the sub-Rayleigh regime of our interest. For the cosine
modes, the aperture samples the peak of the fringe. For the sine modes, the aperture samples
the fringe minimum. The smaller X gets, the transmission for the sine mode decreases, and the
transmission for the cosine mode increases. The transmitted photons �1,2 for each mode are then
given by

#1 = 2#0?1
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In deriving Eqs. (S2, S3), we have assumed the beam at the aperture is a cosine or sine times a
broad Gaussian of width f1 such that f1 � f0? . Using ?1 + ?2 = 1, we find the total photons
transmitted by the aperture is given by

#C = #1 + #2 = 2#0
f0?

f1

(
1 + W4−262f2

0?

)
. (S4)

Eq. (S4) does not contradict energy conservation. The transmitted photon number �1 + �2 is not a
strictly conserved quantity since it is the photon number in a local (Gaussian-apodized) portion
of a fringe pattern. In essence, Eq. (S4) simply shows that the aperture transmission depends on
the spatial coherence among two partially coherent emitters.

The propagation from the aperture to the image plane is also unitary, and hence Eqs. (S2-S4)
also give the number of symmetric, antisymmetric, and total image plane photons. At the image
plane, the Gaussian PSF’s width f is related to f0? by :2f2

0?/ 5 2 = 1/4f2. We then have,
using 6 = :X/2 5 , exp[−262f2

0?] = exp[−X2/8f2] = 3, where 3 is the overlap integral of the
Gaussian PSFs. The overlap is generated due to the nonunitary nature of the aperture, as is
evident from our analysis. Moreover, the image plane CSD given in Eq. (1) of the main text
is found by substituting 5 ± (G) = 4−(G±X/2)

2/4f2

(2cf2)1/4 , and ^ = f0?/f1 in Eq. (S1). Formally, the
image and object plane CSDs can be connected by propagating the coherent modes through the
nonunitary imaging system. Finally, by substituting ^ = f0?/f1 and using ?1,2 = (1 ± W)/2,
Eqs. (S2-S4) reduce to Eqs. (2,3) of the main text.



S2. Derivation of Eqs. (4,5) of the main text

Assuming Poisson statistics and using Eqs. (S2, S3), we derive the FI matrix as
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∑
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If only X is unknown, the FI normalized by the object plane photon number 2#0 is described by
� (1, 1)/2#0, which is equivalent to Eq. (4) of the main text and is plotted in Fig. (1a) of the
main text.

If both X and #0 are unknown, the FI for estimating X is found by (� (1, 1))−1, where � = �−1,
and � (1, 1) gives the multiparameter CRB. The matrix � is given as
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The quantity (� (1, 1))−1 /2#0 is given by Eq. (5) of the main text and plotted in Fig. (1b) of the
main text.

S3. Offline Coherence Synthesis and Modal Weights vs. W

In this section, we describe the offline coherence synthesis and measurements of the normalized
image plane modal weights <1,2 = #1,2/#C , where #C , #1,2 are given by Eqs. (2,3) of the main
text.

Since we are working in the image plane model, we do not know #0 as explained in the Theory
section of the main text. For this section, we therefore denote the symmetric and antisymmetric
experimental photon numbers as #BH<,0BH< instead of #1,2 as used in Eq. (3) of the manuscript.
For a fixed X, we prepare an antisymmetric mode and record its photon number #0BH< at the output
of the parity sorter. #0BH< can be arbitrary but is dictated by experimental limitations such as
phase noise of the interferometer, electronic noise and dynamic range of the detector etc. We then
prepare a symmetric mode for the given X, and record its flux at the output of the parity sorter over
a wide range of input powers. For a particular W and X, the corresponding photon number #BH<

of the symmetric mode is given as #BH< =  #0BH<, where  = (1 + W) (1 + 3)/(1 − W) (1 − 3).
The modal weights are normalized by #C = #BH< + #0BH< such that <1,2 = #BH<,0BH</(#C ).
We then post-select values for the desired W. For example, assume X = 0.5f, and 1 photon in the
antisymmetric mode, i.e., #0BH< = 1. For #BH< = {0, 10, 64, 100} photons in the symmetric
mode, the W would correspond to {−1,−0.72, 0, 0.2} respectively. Note that the post-selected
#BH< and #0BH< are random variables which include both the quantum shot noise and the
classical electronic and optical noise of the system. The post-selection is only applied to the
‘mean’ values of #0BH< and #BH< satisfying 〈#BH<〉 =  〈#0BH<〉, as explained in the Image
processing section. We emphasize that experimentally, in the image plane model and offline
coherence synthesis afforded by the CMD, #C is defined as equal to #BH< + #0BH< (the total
photons in the interferometer) and does not depend on X or W as in the object plane model of Eq.
(2) of the main text.

Figure (S1) shows the measured modal weights for different W values. The solid red and blue
lines in Fig. (S1a-c) are theoretically expected plots of even and odd modal weights respectively.
The dashed lines are the theoretically expected plots incorporating effects of cross-talk. The



Fig. S1. Measured modal weights for the parity sorter. a-c: Modal weights for W =
−1, 1,−0.75. Blue and red color indicates the odd and even modal weights respectively.
Solid lines indicate the theoretically expected modal weights with zero cross-talk. The
dashed lines indicate the expected modal weights for 8% cross-talk. The circles indicate the
measured values. All the modal weights are normalized by #C , the total number of photons
in the interferometer. Each point on the graphs represents a mean of 10 measurements, while
the error bars are too small to be noticed on the graph. Note that for |W | = 1, the modal
weights are constant versus X.

circles indicate the mean values of data recorded for 10 measurements. For |W | = 1, all the optical
power is directed into a single port; %1 = 1 (solid red line) and %2 = 0 (solid blue line) for W = 1.
Similarly %1 = 0 and %2 = 1 for W = −1. If the optical power in either port does not change as a
function of X, which is the parameter to be estimated, one would expect no information to be
gained by parity sorting. The error bars on all figures are too small to be visible on the graph.
Finally, Fig. (S1 b) shows the modal weights measured for W = −0.75. The modal weights change
rapidly with X, and therefore one would expect a higher FI for W = −0.75 than for W = 1,−1.

When processing the measured optical powers for the maximum likelihood estimation (MLE),
we have subtracted any cross-talk, which was 8% on average, between the two ports. The
cross-talk could be attributed to intensity mismatch of the two beams, finite coherence time, and
fluctuations of path length and polarization in the two arms. This background subtraction is
allowed because we are generating coherence offline by adding post-selected intensities, and
only one of the coherent modes is present at a given time. Better alignment of the system
can reduce the cross-talk. However, this experimental complexity is irrelevant to the analysis
of partial coherence and thus is avoided in our proof-of-principle experiment by using offline
coherence generation. Figure (S2) shows the cross-talk subtracted modal weights measured for
W = 0,±, 0.25,±0.5 . Note that for a given X, the power in the symmetric (antisymmetric) mode
increases (decreases) as W becomes more positive.

S4. Experimental Details

S4.1. Mode Intensity vs. X

In our superresolution experiment we directly prepare the image plane CSD, represented by Eq.
(1) of the main text, through the SLM and subsequent offline addition of modes. Specifically, this
technique allows us to avoid the more complicated procedure of preparing two actual emitters
with varying W and X, with a CSD given by Eq. (S1), and a physical Gaussian aperture whose



Fig. S2. Measured and expected modal weights for the parity sorter for W = 0,±0.25,±0.5.
Blue and red solid lines respectively indicate the theoretically expected modal weights for
antisymmetric and symmetric mode. The circles indicate the measured modal weights. Each
point on the graphs represents a mean of 10 measurements, while the error bars are too small
to be noticed on the graph. Note that cross-talk has been subtracted for this data.

transmission varies according to Eq. (S2-S4). To this end, the power in the coherent modes does
not depend on X. This is because the SLM is fundamentally a phase grating whose first diffraction
order contains the desired coherent mode. Ideally, the efficiency of the grating is independent
of X, except for the zero-photon case of W = −1 and X = 0 in which case no grating phase is
implemented. As long as the SLM pixel pitch and phase modulation range are not the bottleneck
for a given phase grating, the grating efficiency and hence the power in a mode will not change
with X. Figure (S3) shows the power in the symmetric and antisymmetric modes measured
for a fixed input power incident on the SLM. We see that the mode power is independent of X.
The grating efficiency for the symmetric mode is actually lower than the antisymmetric mode,
which causes the lower power in the symmetric mode. We can control the power going to the
interferometer with polarization optics, and can control the powers of the mode after the SLM.



Fig. S3. Power in the Coherent modes versus X for fixed input laser power impinging on the
SLM. The power has been normalized to the power in the Symmetric mode for X = 0.1f.
Note that the power in the antisymmetric mode is consistently higher because of the higher
diffraction efficiency of the SLM phase grating required to generate the antisymmetric mode.
Ten images were taken for each data point.

S4.2. Image Processing

The basic idea of coherent mode decomposition (CMD) is to add the symmetric and antisymmetric
modes on an intensity basis. For a specific X and W , the relative intensity of the symmetric
and antisymmetric mode is <1/<2 =  = (1 + W) (1 + 3)/(1 − W) (1 − 3) as evident from Eq.
(3) in the main text. For example, if W = 0 and 3 = exp (−X2/8f2) = 0.5 (which implies that
(X/f)2 = −8ln[0.5]), then <1/<2 = 3. To ‘prepare’ the W = 0 intensity offline for this X, one
then needs to have a symmetric mode with thrice the power of the antisymmetric mode. As will
be explained below, we post-select the required powers for each coherent mode from an array of
recorded powers. These post-selected powers are then used to obtain the ML estimate X̂. This
process is repeated 100 times and the variance Var[X̂] is then compared with the CRB.

We measure Var[X̂] for W = 0 and W = −0.75. For these W values and X/f < 1, the power in the
symmetric mode is always larger than the power in the antisymmetric modes, as is evident from
Figs. (S1,S2). Therefore, a large dynammic range is required to accurately measure these modal
weights. To increase the dynamic range of our measured powers, we use the fact that our problem
is 1D (G dimension), while the coherent mode is 2D; the coherent modes are a symmetric zeroth
order Gaussian in H. The integrated power in each row of the coherent mode then corresponds to
an independent parity sorting measurement. # rows in the mode then correspond to # bucket
detectors performing parity sorting measurements. Figure (S4) shows an image of the coherent
modes and the marginals for X = 0.4f. Specifically, each point on the Y marginal is used as an
independent realization of a parity sorting measurement. This is allowed because we are using
an approximately single-mode laser source, for which the pixels on the CCD are uncorrelated in
intensity [2]. It is from these Y marginals of the symmetric and antisymmetric modes that we
choose the photon numbers #BH<,0BH< such that #BH< =  #0BH<.

To saturate the Cramer–Rao bound (CRB), the system should be shot-noise limited. This means
that the photon numbers used from the Y marginals should have Poisson statistics. We use a low
noise Gigajot CCD with a dark current of less than 0.5 4 − /B/pixel at room temperature [3]. The
photoelectron statistics of each arm of the interferometer are shot noise limited, as can be found by
blocking the other arm. We show the noise statistics of the interferometer output in Fig. (S5). For



Fig. S4. Sample Image of Coherent Modes and their marginals for X = 0.4f. Each
pixel value on the Y marginal is counted as a bucket detector output in the parity sorter.
The colorbar on the mode images and the y-axis on the marginals represent the detected
photoelectron number.

every pixel on the Y marginal, we have three numbers: (i) the mean intensity 〈� (H)〉 (circles and
solid blue line), where � (H) =

∫
3G |q(G, H) |2 is the integrated intensity across G and the ensemble

average is taken across the 100 acquired images. (ii) The variance 〈Δ �2 (H)〉 = 〈�2 (H)〉 − 〈� (H)〉2
(solid orange line), and (iii) the noise metric " (H) = (〈Δ �2 (H)〉 − 〈� (H)〉)/〈� (H)〉 (cross and
solid purple line). " ≈ 0 corresponds to shot noise statistics, while any classical (electronic or
optical) fluctuations will increase the value of " . In Fig. (S5), the reference arm statistics shows
that the centre portion of the Y marginal Gaussian is close to being shot noise limited because of
the high intensity, as opposed to the tails of the Gaussian. In contrast, the interference images, for
which both arms are unblocked, have high " values in the centre of the Gaussian. Note that the
classical noise is more pronounced in the antisymmetric mode compared to the symmetric mode.
The major noise source in our interferometer is phase noise due to path length fluctuations

in the interferometer. Moreover, the phase noise fluctuations do not affect the coherent modes
globally. This is due to the mode inhomogeneities introduced due to phase jumps in the SLM arm
of the interferometer [4] that implements the 2 5 system. The peaks in the noise of the interference
images in Fig. (S5) are due to the mode inhomogeneities caused mainly due to phase rings of
the SLM coupled with the path length fluctuations. However, there is a significant number of
rows that are are relatively less affected by phase fluctuations such that " (H) < 1. These are the
rows we use in the ML estimator. We sort the rows in ascending order according to the metric
" (H), and use these sorted rows in the CMD; rows with the lowest absolute " (H) value is picked
first for CMD. Note that " (H) < 0 is possible because of the finite size of our ensemble of 100
images, and we therefore sort based on |" (H) | rather than " (H). A consequence of our CMD
algorithm is that data for a higher W will have a higher photon number. This is because for a
higher W on the real line, the ratio <1/<2 increases as 1/(1− W), and hence we require more rows
of the symmetric mode to generate the required coherent mode power. Another effect of this



Fig. S5. Noise statistics of the parity sorter. All figures show the statistics of the Y marginal.
Top row shows the statistics of the reference arm, with the 2 5 imaging SLM arm blocked.
Bottom row shows the statistics of the interference images, with both arms unblocked. Solid
blue lines and circles represent the mean value 〈� (H)〉 over 100 images (blue y-axis on left).
Solid orange line represents the variance 〈Δ �2 (H)〉. Solid purple line and crosses represent
the noise metric " (H) (purple y-axis on right). The dashed purple line represents the shot
noise limit " = 0. Note that the two reference and interference images were taken separately
with different laser powers, so the reference image power is not exactly half that of the
interference image power. The text discusses details of the figure.



Fig. S6. Left: Mean total image plane photon number #C per iteration used in estimation of
X. Note that the photon number for W = 0 (green triangles) is consistently higher than the
photon number for W = −0.75. Right: The MSE for W = 0,−0.75. The MSE for W = −0.75
is less than the MSE for the W = 0 case for all but the X = 0.9f case.

algorithm is that data for a higher W will have higher (classical) noise, since more rows are added.
The difference in the noise due to the different number of rows is observed to be not significant,
however, in our experiment. One way to mitigate this noise difference is to take more images and
add them to get a set of 100 images. This will decrease phase fluctuations due to averaging. For
X = 0.2 − 0.5, we took [500 − 200] images and added them together to prepare 100 images each
for processing. In Fig. (3) of the manuscript, we compare W = 0 and W = −0.75, for which the
number of rows do not differ significantly and hence the phase noise is approximately the same
for both W cases.

S4.3. Photon number in Fig. (3) of Main text

Figure (3b) of the main text compares the product of the mean squared error (MSE/4f2) and
the mean total image plane photon number (#C ) used for each iteration in the 100 estimates.
This was done because the CRB lowerbounds the product #CVar[X̂] and not just Var[X̂]. It is
still instructive to look at the actual photon number and the mean squared error separately. As
explained in the Image Processing section, the mean photon number is not the same for W = 0 and
W = −0.75. In Fig. (S6) we show the actual values of the photon number and the mean squared
error, i.e., Var[X̂] for both W = 0,−0.75. Note that the photon number for W = 0 is consistently
higher than the photon number for W = −0.75. Despite that, because the FI for W = −0.75 is
higher than the FI for W = 0 case, the variance for partially anticorrelated case is lower than the
variance for the incoherent case for all but the X = 0.9f case. Had the photon number in the
W = −0.75 case been increased to match the W = 0 photon number, the variance in the W = −0.75
case would have dropped even further. This shows unambiguously that for the same number of
photons, partial anticorrelation among the sources leads to a lower variance than the incoherent
scenario.
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