Optica Publishing Group
Browse

Spontaneous photon-pair generation at the nanoscale

Posted on 2019-10-31 - 20:04
Optical nanoantennas have shown a great capacity for efficient extraction of photons from the near to the far-field, enabling directional emission from nanoscale single-photon sources. However, their potential for the generation and extraction of multi-photon quantum states remains unexplored. Here we demonstrate experimentally the nanoscale generation of two-photon quantum states at telecommunication wavelengths based on spontaneous parametric down-conversion in an optical nanoantenna. The antenna is a crystalline AlGaAs nanocylinder, possessing Mie-type resonances at both the pump and the bi-photon wavelengths and when excited by a pump beam generates photon-pairs with a rate of 35Hz. Normalized to the pump energy stored by the nanoantenna, this rate corresponds to 1.4 GHz/Wm, being one order of magnitude higher than conventional on-chip or bulk photon-pair sources. Our experiments open the way for multiplexing several antennas for coherent generation of multi-photon quantum states with complex spatial-mode entanglement and applications in free-space quantum communications and sensing.

CITE THIS COLLECTION

DataCite
3 Biotech
3D Printing in Medicine
3D Research
3D-Printed Materials and Systems
4OR
AAPG Bulletin
AAPS Open
AAPS PharmSciTech
Abhandlungen aus dem Mathematischen Seminar der Universität Hamburg
ABI Technik (German)
Academic Medicine
Academic Pediatrics
Academic Psychiatry
Academic Questions
Academy of Management Discoveries
Academy of Management Journal
Academy of Management Learning and Education
Academy of Management Perspectives
Academy of Management Proceedings
Academy of Management Review
or
Select your citation style and then place your mouse over the citation text to select it.

SHARE

email

Usage metrics

Read the peer-reviewed publication

Optica

AUTHORS (10)

Dragomir Neshev
Giuseppe Marino
Alexander Solntsev
Lei Xu
Valerio Gili
Luca Carletti
Alexander Poddubny
Mohsen Rahmani
Daria Smirnova
Haitao Chen

CATEGORIES

need help?