Stochastic complex transmittance screens for synthesizing general partially coherent sources

Published on 2020-01-13T22:12:26Z (GMT) by
We develop a method to synthesize any partially coherent source (PCS) with a genuine cross-spectral density (CSD) function using complex transmittance screens. Prior work concerning PCS synthesis with complex transmittance screens has focused on generating Schell-model (uniformly correlated) sources. Here, using the necessary and sufficient condition for a genuine CSD function, we derive an expression, in the form of a superposition integral, that produces stochastic complex screen realizations. The sample autocorrelation of the screens is equal to the complex correlation function of the desired PCS.We validate our work by generating, in simulation, three PCSs from the literature—all have never been synthesized using stochastic screens before. Examining planar slices through the four-dimensional CSD functions, we find the simulated results to be in excellent agreement with theory implying successful realization of all three PCSs. The technique presented herein adds to the existing literature concerning the generation of PCSs and can be physically implemented using a simple optical setup consisting of a laser, spatial light modulator, and spatial filter.

Cite this collection

Hyde, Milo (2020): Stochastic complex transmittance screens for

synthesizing general partially coherent sources. The Optical Society. Collection. https://doi.org/10.6084/m9.figshare.c.4714964.v1