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This document provides supplementary information to “Wideband dielectric metamaterial reflectors: Mie
scattering or leaky Bloch mode resonance?,” https://doi.org/10.1364/0PTICA.5.000289. Here, we explain further
details on simulation and modeling. Section 1 presents the effective medium conversion of a 2D resonant lattice to
1D slab waveguide. In conversion to 1D from 2D, Section 2 shows the modal processes with two equivalent 1D
models. Section 3 illustrates the discussion of Mie scattering in isolated Si rods. Finite-difference time-
domain (FDTD) simulations are employed to quantify the total scattering cross section (TSCS) spectra of an
isolated Si rod. Utilizing an enclosed launch excitation type, only scattered fields outside the launch
boundary are numerically encountered. Section 4 explains the specific boundary conditions in the FDTD
simulations to make the four visualizations of the electrodynamics of light propagation in periodic and finite
Si gratings.

1. Effective Medium Conversion
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Figure S1. Effective-medium conversion of a 2D resonant lattice to 1D slab representations. Using the zero-order effective index, the 2D constituent grating
is decomposed into two quasi-equivalent 1D grating components, where TM and TE modes have their electric-field vectors perpendicular and parallel to the
grooves of the 1D grating. Then, the two equivalent 1D-slab waveguide structures are modeled using the second-order effective index.
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To enable clear understanding of the physics governing resonant
lattices, we decompose the 2D lattice into quasi-equivalent 1D
lattices. As depicted in Fig. S1, the corresponding 1D gratings are
established by zero-order effective-medium theory (EMT) given

by
NO =[Fn, +(1-F)n2 | and
NO =[Fn2 +(1-F)n? ] (S1)
where F=7nD/4A

Then, two equivalent 1D-slab structures are converted from each
1D TM and TE grating component (see definition in Fig. S1) using
second-order EMT [1,2]. Therefore, the TM and TE slab structures

have second-order effective indices n’(N{”,n,) and

(2)(N(°),nL) that are given by the following functions of
(a b) andn (a b).
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n'" (a,b) = [fa2 +(1-1)b’ ]1/2 and
=[fa” +(1-f)b~ |

where n; )(a b) and n(l)(a b) are the second-order -effective

indices as functions of two different indices (a,b). The
Cy(a,b)and C, (a, b) are constant coefficient multipliers for TE
and TM polarizations as seen in Eq. (3). The nﬁo) and n(o) are the

effective indices in the zero-order EMT approximation for
decoupled two 1D grating structures. To calculate the modal
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curves using the estimated effective index, we used the classic
formulas3 for the slab structure in air (n=1) as follows

)= [v,(2)+5,(2)]x (4)
K- v() ()
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where & (4)= ( 2k = ﬂz(l))m,
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Here the estimated effective refractive index is applied for each
slab waveguide by ng,, (TE) = n(z)(nII ,n,) andngq;, (TM) =

tan[l(

(TE)

1/2

)(n(o) nL). The propagation constant is then defined as an
effectlve propagation constant f3;

B (A)=k(ny,sin(6)—id/ A) (S6)

with grating period A and angle of incidence 6. The i integers label
the diffracted waves. Finally, the slab waveguide modes as a
function of the slab thickness d are characterized for the TE and
TM modes.

2. Equivalent 1D Models

In the conversion to 1D, we approximate the cylindrical pillars by
square pillars having the same diameter and height. Comparing
the reflectance spectra of Fig. 2(b) main text (cylindrical pillars) to
the spectra in Fig. S2(a) (square pillars) shows that this is a good
approximation. Utilizing second-order effective-medium theory
(2nd EMT) [2],we reduce the dimension of the 2D grating into two
quasi-equivalent 1D gratings. The 1D gratings are orthogonal to
each other and they have TM and TE effective refractive index
calculated by 2n EMT. The detailed method is explained in a
previous paper.* From the Ro maps in Figs. S2(b) and S2(c), it is
seen that all main reflectance features of the 2D grating originate
from a blend of TM and TE resonant leaky modes. It is notable that
the TM modes contribute the broad band of high reflection.
Degraded reflection appears where the TM and TE modes coexist
in the 2D grating. Optimization of the 2D resonant reflector should
be implemented to avoid the degraded reflection zone.

0.80
0.40

. 0.20
0

0
12 13 14 15 16 1.7 18 19 20
Wavelength (um)

|

Figure S2 Modal processes in 2D guided-mode resonant lattices and correlations with processes in effective 1D decompositions. The Ro color maps as a
function of Dn are displayed for (a) the original 2D rectangular grating, (b) 1D TM polarized reflector, and (c) 1D TE polarized reflector. The complex
modal processes in the 2D resonant grating are explainable by more transparent processes occurring in the 1D resonant gratings.
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Figure S3 Mie scattering and guided-mode resonance in relation to the 1D Si grating in Fig. 3(c) of the main text. Magnitude and phase of field
distribution in (a) a single Si rod and in a (b) periodic Si grating at same wavelength (i) 1.426 pm.

3. Mie Scattering In Isolated Rods

Figure S3 shows the comparison of field distributions in single and
periodic Si rods at wavelengths (i) 1.426 pm as marked in Fig. 4(b)
of the main text. Notably, the electric dipole field signature in the
single Si rod of Fig. S3(a) does not maintain as the rods are
periodically arranged to enter the guided-mode resonance regime.
As displayed in Fig. S3(b), the localized field and phase profiles are
significantly different from the Mie resonance profile of the single
Sirod even at the Mie electric-dipole wavelength. In fact, the profile
at A = 1.426 um is close to the field distribution associated with
counterpropagating lateral Bloch modes as provided in Fig. 3(c)
(main text).
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4. Numerical Visualizations

We visualize the dynamic field distributions in the Si-grating
reflector by recording FDTD simulations with different boundary
conditions as shown in Fig. S4. The reflector without (a) and with
(b) a sublayer is modeled using periodic boundary conditions at
the lateral sides of the simulation boundary. We remove scattering
at the top and bottom boundaries with perfectly matched layers
(PMLs). To eliminate counterpropagation and standing waves,
finite grating reflectors without (c) and with (d) a sublayer are
modeled by the PMLs at the sides of simulation boundary as noted
in Fig. S4.
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Figure S4 Arrangement of simulation boundaries for recording the dynamic resonant fields. The reflector without (a) and with (b) a sublayer is modeled
using periodic boundary conditions at both sides of the simulation boundary. Finite grating reflectors without (c) and with (d) a sublayer are

modeled with PMLs at both sides of the simulation boundary.
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