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This document provides supplementary information to “Wideband dielectric metamaterial reflectors: Mie 
scattering or leaky Bloch mode resonance?,” https://doi.org/10.1364/OPTICA.5.000289. Here, we explain further 
details on simulation and modeling. Section 1 presents the effective medium conversion of a 2D resonant lattice to 
1D slab waveguide. In conversion to 1D from 2D, Section 2 shows the modal processes with two equivalent 1D 
models. Section 3 illustrates the discussion of Mie scattering in isolated Si rods. Finite-difference time-
domain (FDTD) simulations are employed to quantify the total scattering cross section (TSCS) spectra of an 
isolated Si rod. Utilizing an enclosed launch excitation type, only scattered fields outside the launch 
boundary are numerically encountered. Section 4 explains the specific boundary conditions in the FDTD 
simulations to make the four visualizations of the electrodynamics of light propagation in periodic and finite 
Si gratings. 

1. Effective Medium Conversion

Figure S1. Effective-medium conversion of a 2D resonant lattice to 1D slab representations. Using the zero-order effective index, the 2D constituent grating 
is decomposed into two quasi-equivalent 1D grating components, where TM and TE modes have their electric-field vectors perpendicular and parallel to the 
grooves of the 1D grating. Then, the two equivalent 1D-slab waveguide structures are modeled using the second-order effective index. 

https://doi.org/10.1364/OPTICA.5.000289
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