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This document provides supplementary information to "Three-dimensional spatially 
resolved optical energy density enhanced by wavefront shaping," https://
doi.org/10.1364/OPTICA.5.000844. We discuss the ZnO scattering samples, the optical 
wavefront shaping setup including the data acquisition times and wavefront shaping 
fidelity, and we elaborate on the 3D model for the enhanced energy density as a result of 
wavefront shaping.

1. SAMPLES

Our scattering samples are made of ZnO nanoparticles that are
sparsely doped with fluorescent spheres. We first diluted the
original aqueous suspension of fluorescent spheres (Thermo
Scientific Fluoro-Max Red Aqueous Fluorescent Particles with
concentration of 1%, radius R = 150 nm, fluorescence wave-
length centered at λ f = 612 nm) to 105 times, then added 2.5
g ZnO nanoparticles (Sigma-Aldrich Zinc Oxide 205532, aver-
age radius R = 100 nm) into 10 ml of the diluted suspension.
We fabricated the samples by spraying the thoroughly mixed
suspension on a cleaned objective substrate glass, and letting it
dry in air. The thickness L of the sample was controlled by the
spraying time.

To characterize the scattering properties of the samples, total
transmission measurements were performed on similar samples
to determine the transport mean free path to be ` = 0.58+0.16

−0.10 µm
(see Ref. [1]).1 We derive the extrapolation lengths from the
average reflectivity at the interfaces for a scattering medium with
effective refractive index neff [2]. The effective refractive index
neff was determined from measurements of the angle-resolved

1 The photonic interaction strength is about 1/(k`) = 1/(2π) (k is the wave
vector), which is in the diffusive regime [14]. Moreover, since we consider the
diffuse energy density, interference effects such as weak localization are averaged.

escape function on similar samples, to find n eff =  1.45 ± 0.12 
and extrapolation lengths ze1 = 2.19`, ze2 = 0.68` [1].

To ensure that the distribution of the energy density at λe
inside the scattering medium is not perturbed by the absorp-
tion from the probing fluorescent nanosphere, we use fluores-
cent spheres with low absorption probability of 2 × 10−4% [3]. 
The absorption probability is the ratio of the absorption cross 
section to the physical cross section of the fluorescent spheres. 
Moreover, the concentration of the fluorescent spheres in the 
samples is of the order of 10−5 µm−3, which results in an albedo 
a ≈ 1 − 10−8 [4]. Since single fluorescent nanospheres have an 
extremely low absorption probability and albedo, the ZnO 
scattering medium is lossless with well-defined transmission 
channels.

2. SETUP, ACQUISITION TIMES, AND NOISE

Our experimental setup is shown in Figure S1. A continuous 
wave (cw) excitation laser beam (Cobolt Jive, 100 mW, λe = 561 
nm) is coupled to a single mode fiber (SMF) for spatial mode 
cleaning, and expanded to 8 mm beam diameter to illuminate 
a spatial light modulator (SLM, Holoeye PLUTO-VIS-014-C). 
The SLM controls the wavefront of the reflected light. Through 
an imaging configuration, a twice demagnified image of the
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Fig. S1. Experimental setup: the cw laser beam (λe = 561 nm)
is spatially filtered and collimated to illuminate a phase-only
reflection-type spatial light modulator (SLM) that controls the
wavefront. The surface of the SLM is imaged to the entrance
pupil of the first objective lens (MO1), and projected on a scat-
tering sample of ZnO nanoparticles doped with fluorescent
spheres. The back surface of the sample is imaged onto an
EMCCD camera to collect the fluorescent intensity and onto a
CCD camera to collect the excitation light. λ/2 is a half-wave
plate, PBS a polarizing beam splitter, BD a beam dump, BE a
beam expander, SMF a single-mode fiber, L1, L2, L3, and L4
lenses with focal distances 11 mm, 200 mm, 100 mm, and 500
mm, respectively, C a collimator, A1 and A2 apertures, M1
and M2 mirrors, MO1 and MO2 microscope objectives, DB a
dichroic beam splitter, F1 and F2 filters, and P is a polarizer.

SLM is formed at the entrance pupil of the first objective MO1
(Nikon: infinity corrected, 100×, NA = 0.9) to give a 0.31 µm
focused spot with a planar wavefront and estimated to be about
56 mum with a random wavefront. The position of the scattering
medium was controlled by a piezoelectric scanning stage. By
using a microscopy configuration composed of an immersion oil
objective MO2 (Nikon: Infinity corrected, 60×, NA = 1.49) and
a tube lens L4 (focal length f = 50 cm), the back surface of the
sample is imaged onto a CCD camera (Allied Vision Technolo-
gies Stingray F-145) to detect the excitation light, and onto an
electro-magnified camera (EMCCD, Andor iXon Ultra 897) to
sensitively detect the weak fluorescent light. The excitation laser
light and fluorescent light were separated by a dichroic beam
splitter (DB) in the microscopy configuration.

We chose to limit the number of degrees of freedom on the
SLM to N = 900, in order to optimize the fidelity versus the
time it takes to do optimization experiments, notably since the
required fluorescence measurements lead to unavoidable bleach-
ing of the fluorescent nanospheres. We find that with N = 900
controlled pixels on the SLM, the optimization time is a feasible
20 minutes, while for N = 3000 pixels the optimization time
already exceeds 1 hour. Due to the low number of degree of
control on the SLM, we obtained a typical enhancement of about
270, which is sufficient for our experiment.

Let us briefly elaborate on the data acquisition times, as this
ultimately limits the amount of data we could collect. Data such
as the ones shown in Figure 5 in the main manuscript take about
20 minutes to collect. Data as in Figure 6 of the main manuscript
take about 2 days per data point to collect, namely, m2 = 100
scans times 20 minutes, plus additional time for alignment. All
data as shown in Figure 3 take more than about 1 month to
measure. The long acquisition times therefore limit the number
of data points that can be collected, and prohibit to investigate

whether there are deviations from the cylindrical symmetry in
the physical problem at hand.

For an extensive discussion on noise in a similar wavefront
shaping, we refer to Ref. [5]. Based on that work, we conclude
that the error bars on the fluorescence enhancement and on the
fidelity are about 4% and 14%, respectively. We attribute the
large variation of the fluorescent enhancement to the low signal-
to-noise ratio due to the singly illuminated fluorescent particle.
The maximum obtained fidelity depends notably on the ratio of
the controlled segments to the number of channels in the sample,
imperfections in phase modulation, temporal drifts, control of
both polarizations, phase and amplitude control, and instability
in environmental conditions. We limit the number of segments
on the SLM on purpose to 900 to keep the measurement time
reasonable. With 900 controlled segments (compared to 104

channels for the 16 µm-thick sample), the upper limit to the
fidelity is F ≈ 0.1.

3. MODELING THE THREE-DIMENSIONAL ENERGY
DENSITY

The 3D energy density of light optimized to focus to a point
by wavefront shaping is denoted Wo(x, y, z). Following the
maximal fluctuation principle described by Pendry et al. [6, 7],
we approximate the transmission through fully open channels.
This approximation implies that there are only ‘on’ and ‘off’
states, and that intermediate-transmission states are neglected.
For a fully open channel we know from Ref. [5, 12] that the
(x, y)-integrated energy density Wo(z) is well described by only
the fundamental diffusion eigenfunction2

Wo(z) = A Wm=1(z) =
∫ ∞

−∞

∫ ∞

−∞
dxdy Wo(x, y, z) , (S1)

where A is a proportionality constant. The fundamental diffu-
sion eigenfunction that describes the energy density of an open
channel is given by

Wm=1(z) =
I0Lex

πD

sin
(

π z+ze1
Lex

)
cos

(
π ze2

Lex

) , (S2)

with I0 the incident intensity, D the diffusion constant, and
Lex = L+ ze1 + ze2 [8], with ze1 and ze2 the extrapolation lengths
of the front and back surfaces, respectively [2, 9].

Figure S2 illustrates that the optimized focus is taken to be
the time reverse (or phase conjugate) of a perfectly focused beam
that enters the sample from the back surface [10, 11]. The result-
ing ensemble-averaged energy density Wdif(x, y, z) is described
by the 3D diffusion equation in Fourier transformed transverse

coordinates
(

q⊥x, q⊥y

)
as

Wdif(q⊥; z, zf) =
Pin
D

sinh (q⊥ [Lex − z− ze1]) sinh
(

q⊥
[
z f + ze1

])
q⊥ sinh (q⊥Lex)

(S3)

where q⊥ ≡
(

q⊥x + q⊥y

) 1
2 and Pin is the incident power. The so-

lution in Eq. S3 only holds for z > zf (zf the coordinate of a prob-
ing nanosphere), rather than z as used in the main manuscript

2The 1D fundamental diffusion eigenfunction has been applied to 3D samples
and one of the main assumptions is that the 1D model considers translational
invariance over an ensemble average. We thus conclude that a spatial ensemble
average of the energy density corresponds to a (x,y)-integrated energy.
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Fig. S2. Schematic illustration of the functions that describe
optimized light in 3D inside a scattering medium. (a) A laser
beam is focused at the back surface of the sample and the en-
ergy density Wdif(x, y, z) of diffuse light is described using the
diffusion equation. The focused beam is the time reverse of
the component of optimized light that contributes to the opti-
mized focus. (b) Optimized light propagating from left to right
focuses light at the back surface of the sample. The energy
density Wo(x, y, z) of optimized light has two contributions:
light that goes to the optimized focus Wof(x, y, z) and the back-
ground Wbg(x, y, z). The cartoon shows wavefront shaping in
the absence of experiment imperfections, therefore Wuc = 0.

(for the full solution see Ref. [8]). We model the energy density
of optimized light as a sum of two components

Wo(x, y, z) ≡Wof(x, y, z) + Wbg(x, y, z) . (S4)

where the functions Wof(x, y, z) and Wbg(x, y, z) are illustrated
in Fig. S2. Wof is the energy density of light that propagates in a
converging cone from the front surface to the back surface of the
sample to obtain the optimized focus and Wbg is a background
contribution due to incomplete time reversal of the focus, since
the closed channels are not time-reversed. Due to imperfect
wavefront shaping and experimental noise, We is observed in
experiments and is related to Wo by Eq. 1 in the main manuscript
that is repeated here:

We(x, y, z) = F.Wo(x, y, z) + (1− F).Wuo(x, y, z). (S5)

Wuc describes uncontrolled light due to imperfect wavefront
shaping and experimental noise and F is the fidelity. If we
assume that the wavefront shaping experiment is perfect, i.e.,
F = 1, the diffuse energy density vanishes: Wuo(x, y, z; F = 1) =
0 and We = Wo.

At first sight, one might naively think that the energy density
Wdif is equal to Wof. This reasoning is not plausible, however, as
Wof contains only open channels, therefore its z-dependent pro-
file must track Wm=1(z). Therefore, to obtain Wof, we normalize
Wdif and map it onto the profile of Wm=1(z):

Wof(x, y, z) = A1
Wdif(x, y, z)∫ ∞

−∞

∫ ∞
−∞ dxdy Wdif(x, y, z)

Wm=1(z) , (S6)

where A1 is a normalizing amplitude factor. As the background
term Wbg does not contribute to the optimized focus, and as
we consider perfect shaping in the maximal fluctuation approx-
imation, Wbg consists of only open channels. We describe the
background term Wbg in (x, y) by mapping the z-dependent
Wm=1 onto a Gaussian with constant width ρ0 along z

Wbg(ρ, z) =
A2

πρ2
0

Wm=1(z) exp[−ρ2/ρ2
0], (S7)

with A2 a normalizing constant of the background intensity,
and ρ ≡ (x, y). It is justified to take the Gaussian width to be
constant throughout the medium, since the diffuse beam width
(about ρ0 = 56 µm) exceeds the sample thickness.

The constants A1,2 are constrained such that the intensity
pattern of the optimized light at the back surface is obtained. We
determine A1 from the fact that for perfect wavefront shaping
(F = 1), the total intensity in the optimized focus is proportional
to the total transmission (Ttot ∼ `/L) before wavefront shaping,
therefore A1 = Ttot I0. The intensity in the background A2 is
therefore the total transmitted intensity of an open channel (T =
1) minus the intensity in the focus: A2 = (1− Ttot)I0. Since we
are considering the maximum fluctuation approximation, we
have considered the transmission of an open channel (equal to
1) rather than 2/3, resulting from the weighted transmission of
all channels used in Ref. [5].

Similar as in Eq. (S7), we describe the 3D energy density
of unoptimized light Wuo(ρ, z) by mapping the z-dependent
solution of the 1D diffusion equation Wd(z) in (x, y) onto a
Gaussian profile with a constant width ρ0 along z

Wuo(ρ, z) =
1

πρ2
0

Wd(z) exp[−ρ2/ρ2
0] , (S8)

where Wd(z) is given by

Wd(z) =
I0
D
[ zinj + ze1

Lex
(L + ze2 − z)− zinj exp(− z

zinj
)
]

, (S9)

with zinj the injection depth where incident light becomes dif-
fuse, which accounts for the angular distribution of the incident
shaped wavefront.

The procedure described above guarantees that the total
stored energy in the 3D energy density Wo(x, y, z) equals the one
for open channels Wm=1(z). To verify this balance, we calculated
numerically the difference

∆ =

∫
Vs

dV Wo(x, y, z)∫
Vs

dV Wuo(x, y, z)
−
∫ L

0 dz Wm=1(z)∫ L
0 dz Wd(z)

(S10)

where Vs is the sample volume, and dV = dxdydz. While ∆ is
expected to be equal to 0, we obtain ∆ = 1.2× 10−13 and ∆ =
2× 10−13 for the sample with L = 8 µm and 16 µm, respectively.
This accuracy confirms that our procedure is consistent.

It is a relevant question whether Eq. (1) of the main text
(Eq. S5 above) is valid without ensemble averaging, in the sense
of the traditional habit in the study of random media to av-
erage over speckle patterns by averaging over many different
positions, see, e.g., Ref. [13]. There are several reasons why the
speckle is averaged out when we apply Eq. (1) to describe our
experimental observations. Firstly, since our experiment is effec-
tively a fluorescence study, there is no phase relation between
the incident excitation speckle field and the fluorescence that
we detect. Secondly, the number of excitation speckles within
each fluorescent sphere is about N = 10. The fluorescence ex-
cited by each of these N speckle spots is mutually incoherent,
so that the fluorescence signal is effectively averaged, to within
about 1/N relative error, or about 10%, much less variation than
would be observed with elastic scattered speckle. Thirdly, our
experiments average over the incident wavefronts, that each
corresponds to one volume speckle pattern inside each sam-
ple. Thus, we average over m = 4100 configurations per data
point, sufficient to reliably determine an average differential
fluorescence enhancement, as shown in Fig. 6 of the main text.
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In our experiments, we measured the fluorescent intensity
from single probe nanospheres that are located at a specific posi-
tion z and transverse coordinates (x, y) inside the 3D scattering
medium. We define the fluorescence enhancement η

p
f from a

single nanosphere to be

η
p
f ≡

Fo(x, y, z)
Fuo(x, y, z)

, (S11)

where the fluorescence energy fluxes Fo and Fuo are obtained
from the optimized energy density Wo and the unoptimized
energy density Wuo, respectively. We note here that η

p
f is the

fluorescence enhancement at perfect fidelity F = 1 and is related
to the differential fluorescent enhancement ∂ηf/∂F by

η
p
f =

∂ηf
∂F

+ 1 (S12)

derived from Eq. S5. The flux of the optimized light is equal to

Fo(x, y, z) =
∫

V
dx′dy′dz′ cWo(x′, y′, z′)

z′f + ze1

DLex
, (S13)

where the volume integral accounts for the finite volume V of
the probe particle, c is a proportionality constant that relates
the power to the energy density. The factor z f +ze1

DLex
accounts for

the diffusion the fluorescent emission from the nanosphere at
zf reaching the back surface of the sample z = L. Similarly, the
flux due to unoptimized light is

Fuo(xf, yf, zf) =
∫

V
dx′dy′dz′ cWuo(x′, y′, z′)

z′f + ze1

DLex
, (S14)

Substituting Eqs. S13 and S14 into Eq. S11, we obtain the position-
dependent fluorescence enhancement η

p
f .
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Fig. S3. Fluorescent enhancement η
p
f versus depth z from

Eq. S11. The red solid, blue dash-dot, and green dash curves
are for probe particle positions (x f , y f ) = (0, 0) µm, (2, 0) µm,
and (4, 0) µm, respectively. (The red solid curve is the same
as in Fig. 2a of the main manuscript). Sample parameters are
L = 8 µm, transport mean free path ` = 0.6 µm, and the
extrapolation lengths are ze1 = 2.19`, ze2 = 0.68`.

Figure S3 shows η
p
f as a function of depth z of the fluores-

cent particle using Eq. S11 for particles at different transverse
coordinates x (equivalent to y coordinates). η

p
f increases from

the front surface of the sample and peaks at the back surface
for all x. The increase of η

p
f towards the back surface is due to

the focusing of the wavefront shaped light. The enhancement
η

p
f at the center of the illuminated area x = 0 µm is about 2 to

4× greater than for probe particles displaced by ∆x = 2 µm and
4 µm from the center, respectively. This dependency of η

p
f on the

transverse coordinate x shows that our model correctly captures
the 3D distribution of the energy density.
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