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1. ACQUISITION AND DATA TREATMENT

A 7.3 GHz RF tone (Rohde and Schwarz SMF 100A) is used as the
local oscillator (LO) to downmix the amplified beatnote derived
from the QCL, and the signal from the QWIP; these are then
further downmixed and integrated on a fast (50 MS/s) lock-in
amplifier (Zurich Instruments HF2LI), with an integration time
corresponding to τ ≈ 0.5λ0/v (v the mirror velocity and λ0 the
central wavelength). A stabilised helium neon (HeNe) laser is
also aligned to the interferometer (Brucker IFS 66/S), allowing
the mirror displacement to be measured. This HeNe signal, the
DC autocorrelation taken from the MCT, and lock-in signals are
acquired on a 4-channel fast oscilloscope (LeCroy HDO6104).
We generally oversample as far as the memory allows us, and
then subsequently digitally filter the traces for a processing gain
in SNR of a factor

√
N for an oversampling factor N.

Care is taken to keep the coaxial cable lengths for the X and
Y channels the same, as well as to use the identical filters, so as
not to induce any artificial phase shifts between the components.
Synchronisation between the DC autocorrelation and RF auto-
correlation traces is achieved by comparing the positions of the
centreburst (zero path difference) in the DC autocorrelation and
the smallest peak in |x(t) + iy(t)|2. As there is an AM compo-
nent to the field oscillating at the repetition rate, as made clear
by the existence of a measurable beatnote when light is shined
directly onto the detector, such a peak must exist.

Zero crossings of the HeNe signal are identified, and lin-
ear interpolation is used to improve the precision in their es-
timate. The 3 single-sided interferograms are then resampled
accordingly using a cubic interpolator. We thus move from
units of the scope’s internal LO t to the relative path delay τ.
Being considered narrowband signals (fractional bandwidth <
100cm−1/1200cm−1 ≈ 8.4%), phase correction steps are deemed
unnecessary.

The interferograms are then apodised using the Mertz win-
dow [1], zero-padded, left circular shifted to the centreburst, and
Fourier transformed, as is conventionally done for single-sided
interferograms. A first estimate of the comb repetition rate is
then found either by adding the lock-in demodulation frequency
to the LO frequency used for the downconversion, which is
usually selected to be below the fundamental beat tone of the
QCL, or by measuring the delay in the interferogram from the
centreburst to the first satellite. The estimate is then improved
iteratively on the DC autocorrelation spectrum, which generally
has a higher SNR, by choosing the values of ω̂0 and ω̂r which
maximise ∑n I(ω̂0 + nω̂r).

For stability, we made use of a low-noise current driver
(Wavelength Electronics QCL2000) and thermoelectric cooler
(Wavelength Electronics PTC 10 K-CH, with a standard Peltier
element), in combination with an RF self-referencing scheme to
mitigate drift. To verify the stability, we measured the deviation
of the signal from the lock-in at a fixed path difference at rapid
intervals over the course of more than 20 minutes. As shown
from the Allan deviation[2] in Fig. S1 (a), there is no obvious
drift in the signal over 100 seconds. The stability is confirmed
in Fig. S1 (b), where superimposed are 13 amplitude and phase
difference traces, for measurements taken sequentially at the
same operating point with no power cycling in-between. As
can be seen, they are very consistent and one can legitimately
average.

Confidence intervals are found by the following procedure[3].
The noise level is estimated by taking the average out-of-band
power, i.e. in spectral regions seen to contain no signal. This

is then taken as σ̂
(dc)
N for the DC spectrum, and σ̂

(c,r)
N , σ̂

(c,i)
N

for the real and imaginary quadratures of the complex spec-
tra (c = X− iY), respectively. Monte-Carlo simulations are then
run, whereby samples for dc(ωn), cr(ωn), ci(ωn) are drawn, and
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matching values for A, φ are calculated, forming a unique spec-
trum. For each configuration, the field is simulated. Finally from
the ensemble, the expectation and σN95% confidence bounds for
the instantaneous frequency and intensity are extracted.

1

Am
pl

itu
de

 (a
.u

.)

-4
-2
0
2
4
6
8

ϕ n
-ϕ

n-
1(v

n)

1160 1180 1200 1220 1240 1260 1280
Wavenumber (cm-1)

10 -4 10 -3 10 -2 10 -1 10 0 10 1 10 2 10 3 10 4

 (sec)

10 -4

10 -3

10 -2

10 -1

10 0

10 1

10 2

10 3

y(
)

Allan
1/

(a)

(b)

Fig. S1. (a) Allan deviation[2] measured with the mirror at a
fixed position, for a maximum delay of 200 s. (b) Repeat mea-
surements of the phase differences taken over the course of 5
minutes, at a single operating point, with no power cycling
between, and treated identically. The results have a median
spread of about 15 mrad, demonstrating the phase stability of
the comb.

2. SAMPLES AND FURTHER ANALYSIS

Two similar devices were characterised for this paper, of the
same active region EV2429, and process B: 21NU, and 26HM.
Both devices have a high-reflectivity coating on the back facet
(300 nm Al2O3, 150 nm Au). The GVD for 21NU is shown in
Figure S3 (a). It varies from around -200 to -400 fs2/mm, and
appears to cross zero at around 1175 cm−1. At 1275 cm−1 there
seems to be another turning point. The values for the 26HM in
Figure S3 (b) show similar features and values.

The second device, 26 HM, also demonstrates this chirping be-
haviour, with the difference in group delay between the left and
the right lobes also appearing. Measurements of the modal am-
plitudes and corresponding group delay are shown in Fig. S5 (a)
for 1.2931 A and (c) for 1.6414 A. As before, the time dependent
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Fig. S2. Device characteristics for sample 21NU. (a) Spectral
map taken at 291 K, linear scale. The individual spectra are
normalised to the maximum, with lighter colours indicating
higher intensity. (b) Beatnote map, taken at a resolution band-
width (RBW) of 500 Hz. (c) Beatnote width measured at 3 dB
(FWHM, blue) and 30 dB (orange, intending to capture the
pedestal) at RBW 3 kHz (green dashed line). The shaded green
area covering 1.05 - 1.18 A marks the region over which the
laser is operating as a quiet frequency comb. Not shown: the
green shaded region was measured to have the lowest jitter.
Though the pedestal dip around 1.55 A would seem like a can-
didate state to measure, lasing in this region produces more
than 10 times the frequency noise and relative intensity noise.

intensity and instantaneous frequency are also plotted in (b) and
(d). This further shows that the chirped state persists, or at least
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Fig. S3. GVD of the two devices measured subthreshold at
298 K using the Hakki-Pauli method[4]. (a) Sample 21 NU:
GVD at 3 different current setpoints, giving an estimated GVD
of -200 fs2 at the spectral centre. The pink dashed lines indi-
cate the approximate spectral width where the phases were
measured. Note the positive going zero crossing at the red
side (1170 cm−1) of the spectrum, and the apparent turning
point on the blue side at around 1170 cm−1. (b) GVD for the 26
HM device, at a resolution of 31.6 cm−1. The purple line indi-
cates the intensity of the spectrum of the first satellite, giving
an indication of the range over which the measurement can be
trusted. The blue curve gives the GVD, seen to be around -100
fs2.

exists at multiple points, even over a larger current range than
that measured for the first device.

Note that the plotted instantaneous frequency in places
shows rapid swings between two extrema. This is partly an
artefact of the 1D representation, and corresponds to multi-
ple separated spectral components with similar group delay,
with different time-dependent weightings. The spectrogram
in Fig. S6, shows exactly this behaviour, with the two distinct
GDDs for the two lobes plainly visible, and the overlapping
components at around 25 ps.

Such a temporal response shows it something of an oversim-
plification to describe the field as a plain linear chirp. Plotted
in Fig. S7 (a) are the intermodal phase differences, from which
the overall GDD was estimated for the 21NU device. Looking
more closely, in particular at the highest current values, one can
see that there is in fact higher order dispersion present in the
field. This seems to manifest itself in three distinct regions: the
lobe to the left of 1200 cm−1; the broader region to the right of
1200 cm−1; and those new frequency components which grow
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Fig. S4. Simulated interferometric autocorrelation I(τ) =∫ +∞
−∞ |(E(t) + E(t − τ))2|2dt, computed with the field in Fig-

ure 2 in the main text. The peak to background ratio of 4:1
is consistent with the that presented in[5], where they di-
rectly measured the g(2) of a device lasing at 8 µm using a
two-photon QWIP.

from the main comb towards the blue. In (b), we perform 3
crude linear fits to these fixed spectral regions, and in (c) plot
the estimated GDD as a function of current. The left lobe seems
to have a GDD approximately twice that of the central region,
while the right lobe has surprisingly a negative GDD of about
the magnitude as the middle. As the current increases (i.e. the
spectrum grows), the 3 values seem to all decrease in magnitude,
though at no point do they reconcile.

3. MERIT FUNCTION

We refer interested readers to [6] for a full discussion of the
model.

The merit function is calculated as follows. Firstly, the FWM
term on the RHS of S5 is computed for an amplitude spectrum
of fixed magnitude, but swept chirp. In the second step, the
overall merit is computed, including an adjustable parameter α̃,
which is set such that the difference between the LH terms and
RH terms is minimised; the position of optimal chirp coincides
with this term being maximised, the ultimate value of which can
be interpreted as a measure of the efficiency of the lasing state.

The modal amplitudes take on an assumed shape, in this
particular case a sum of 3 Gaussians, but the total optical power
is left as a free parameter by letting Ãn = αAn.

If we let

Sn =
N/2

∑
k,l=−N/2

Am Ak A∗l BklCklκn,l,k,m (S1)

be the FWM sum, where

Ckl =
γ22

γ22 − i(k− l)ω
(S2)

Bkl =
γ12
2i

(
1

−iγ12 − lω
− 1

iγ12 − kω

)
(S3)

κn,l,k,m =


3
8 , k = l = n,
1
4 , k = l 6= n or l = n,
1
8 , otherwise

(S4)

we then have the following merit function:
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Fig. S5. (a), (b) Modal amplitudes and phase differences,
scaled to the comb repetition rate to give the group delay, for
26HM, measured at 1.2931 A and 1.6414 A, respectively. (c)
and (d) Extracted intensity and instantaneous frequency. Note
that, for these traces there was no averaging, and so the SNR
is generally poorer, as most apparent near the centre of the
spectrum.

M(α, c) = ∑
n

∣∣∣(Gn − 1)α̃An − α̃3GnSn

∣∣∣2 (S5)

Where the objective is to minimise M(α, c). We neglect the
dispersion term for this analysis.

In Fig. S8 (a), we have plotted the merit function over a larger

Fig. S6. Spectrogram computed for Fig. S5 (d). Left: time slices
( 5 ps frame time). Right: Corresponding Fourier spectrum.

extent of chirp parameter, demonstrating that there are many
values of chirp which minimise Eqn. S5. One such state is de-
picted in (c), which makes 4 complete frequency sweeps per
round-trip.

4. DISSIPATION

As described by M. Piccardo, D. Kazakov et. al. [7], the optical
field induces a spatiotemporal population grating in the device,
externally measurable by probing across the length of the laser
ridge the radio frequency voltage, oscillating at the intermodal
beat frequencies. We propose that such a voltage grating would
induce in-plane currents in the high-conductivity cladding and
contact layers, which would contribute to the loss through ohmic
dissipation.

We begin by describing the intracavity field as a sum of for-
ward and backward propagating waves E = E f + Eb, assuming
no mirror losses:

E f = ∑
n

Anei(ωnt+kn x) (S6)

Eb = ∑
n

Anei(ωnt−kn x) (S7)

The intensity is then EE∗ as usual:

I(x, t) = (E f + Eb)(E f + Eb)
∗ = E f E∗f + EbE∗b + E f E∗b + c.c.

(S8)
The cross terms E f E∗b give rise to sum spatial frequency terms

on the order of the optical wavelength. We hence neglect these,
as such terms will not induce currents in the cladding. We then
have:

I(x, t) = ∑
m

∑
n

An A∗m
[
e−i(n−m)ωr tei(kn−km)x + ei(n−m)ωr tei(kn−km)x

]
(S9)

If we then look at only those terms which oscillate at bωr (i.e.
m = n + b, m = n− b):

〈I(x, t)〉|bωr = ∑
n

An[A∗n−be−ibωr tei(kn−kn−b)x+

An+beibωr tei(kn−kn+b)x+

A∗n−beibωr tei(kn−kn−b)x+

A∗n+be−ibωr tei(kn−kn+b)x]

(S10)
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Fig. S7. (a) Amplitude spectrum (left) and phase differences
(right) measured as a function of current for device 21NU. The
current increases in 10 mA steps, going from the bottom up.
The blue dashed line indicates where the GVD changes from
negative from positive. (b) Linear fit of group delay at the
lobes 1170-1186 cm−1 (orange), 1200-1250 cm−1 (green), and
1257-1270 cm−1 to estimate the GDD of the 3 distinct regions,
plotted for 1.20 A. (c) Corresponding GDD estimates for all
current values.

Which, with the spatial repetition rate kr = 2π( 1
λn
− 1

λn−1
),

conveniently simplifies to:
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Fig. S8. (a)Merit plotted for an extended range, showing the
multiplicity of chirped solutions. Powers of low frequency (up
to order 6) and high frequencies is superimposed, showing
the sharp increase of high order beating terms, which we pro-
pose to induce losses. The red dashed line indicates a higher
chirped state, for which the instantaneous frequency is plotted
in (c). (b) Beating terms ∑n An A∗n+B, where B is the beating
order, computed as a function of the chirp parameter. The
low and high orders of B are separated to highlight that high
frequency beatings only play a role for higher chirped states.

〈I(x, t)〉|bωr = cos(bωrt)∑
n

An

[
A∗n−beibkr x + A∗n+be−ibkr x

]
(S11)

〈I(x, t)〉|bωr = cos(bkrx) cos(bωrt)∑
n

An A∗n−b + c.c. (S12)

The intra-cavity intensity will induce a population grating,
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Fig. S9. (a) QCL active region, with an intracavity field. Plot-
ted are the intensity gratings at some fixed time t0 for the
fundamental and second and third harmonic of the inter-
modal beat frequency, and the sum of the 3. This is assumed
to directly correspond to a voltage, which induces a current
∆V(x, t)Re f f (shown by the arrow) which varies spatiotempo-
rally. (b) Dissipative loss, calculated for the same spectrum as
in the main paper, as a function of chirp. This is scaled to α2,
as in Fig. S8 (a).

which tracks these intensity beatings[7]. As such, a spatiotem-
porally varying voltage will also exist, which we assume to run
perfectly in phase with the driving intensity. This can therefore
be expressed:

V(x, t) = IRe f f ∝ EE∗ (S13)

where Re f f can be seen as an effective, or average, resistance,
as experienced by the current passing through the structure
in-plane. The situation is depicted in Fig. S9 (a), where the
instantaneous potential difference V(x0 + δ, t)−V(x0, t) is seen
to induce a current density J(x0, t). We hence take the spatial
derivative in the direction of propagation:

dV(x, t)|bωr

dx
= −bkr sin(bkrx) cos(bωrt) + c.c. (S14)

The power dissipated by order b is therefore proportional to:

P(b)
diss ∝ b2K2

r

∫ ∫
sin2(bkrx) cos2(bωrt)dxdt (S15)

i.e., the loss scales with the square of the beating frequency.
Now, with reference to beating map shown in Section 3 of the
Main Text, one might therefore expect these losses to increase
after around c = −0.05, when the fast oscillations start to set in.
By summing across all beats, we find the overall dissipation to
be:

Pdiss =
1
T

∫ T

0

∫ L

0

(
−∑

b
sin(bkrx) cos(bωrt)∑

n
An A∗n−b + c.c.

)2

dxdt

(S16)
In Fig.S9 (b), we present this dissipation as a function of

chirp. Under the assumptions we have made, one can see a
clear penalty of a factor more than 100 directly attributable to
the additional dissipation when lasing at a higher chirped state,
which was not apparent from the merit function alone; indeed,
the minimum is also slightly shifted towards a lower chirp of c =
−0.0415. However, we should be careful in drawing conclusions
from this, in that we have yet to quantify in real units the order
of magnitude of this effect, and we have furthermore treated
the active region as having a fixed effective resistance, rather
than a frequency dependent impedance, which will no doubt
again affect the weightings of the individual beating components.
These need to be considered more carefully in a future work.
Nonetheless, this idea of intracavity field intensity induced loss
may go some way to explaining why the laser opts for a lower
chirped state, where we have only one frequency sweep per
round trip.
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