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This document provides supplementary information to “Dynamic 2D implementation of 3D diffractive optics,” 
https://doi.org/10.1364/OPTICA.5.001220. It presents additional information on diffraction efficiency analysis, 
system limits discussion, and experiment details of 3D diffractive optics. 

1. DIFFRACTION EFFICIENCY ANALYSIS3D diffractive optics has several interesting advantages relative to thin DOEs in terms of diffraction efficiency, spectral/angular selectivity, as well as new functionalities such as synthetic 3D spatial-temporal wavefront encoding, engineered space-variant functions, and space-time pulse shaping. Here we show the diffraction efficiency can be controlled and enhanced by proper design, due to the additional degrees of freedom provided by the third dimension, compared to 2D DOEs.       The system parameters of importance are the number of layers, 
N, layer separation, ∆ , pixel sizes in the x and y directions, ∆  and ∆ , and number of pixels in the x and y directions, Nx and Ny. For the examples shown here, ∆  =∆  =8 , ∆  =486 . We change 
N =2, 4, 6, …, 20, Nx = Ny=256, 1024.       We implement a frequency multiplexing scheme with two wavelengths, 633nm and 532nm, to encode two desired reconstruction functions. For the purpose of investigating diffraction efficiency, the target images are two off-axis spots at different locations. The first (second) spot, which corresponds to the 633nm (532nm) illuminating wavelength is located halfway (three quarters) from the center to the edge of the far-field grid used.       The 3D diffractive optics are designed with the POCS algorithm with distribution-on-layers optimization. The two spots are reconstructed as designed, namely the first spot (left) shows up for 633nm wavelength reconstruction, and the second one (right) for 532nm. The diffraction efficiency of both spots as functions of the number of layers and the number of pixels are shown in Fig. S1. It takes less than 1 minute to finish the design at two layers with 256×256 pixels, on a 2.8GHz quad-core CPU with 12Gb memory. The diffraction efficiencies for the two spots are 64.55% and 66.68%, respectively. As the number of layers increased to 20, the diffraction efficiencies increased to 70.28% and 72.07%, 

respectively. As we use 1024×1024 pixels in each layer, the diffraction efficiencies for the two spots are 74.11% and 75.16%, respectively, when the number of layer is 2. The numbers increase to as large as 83.26% and 84.77%, respectively, as 6 layers are used in the design. Designs with more layers are beyond the computational power of a personal computer but are still possible with more powerful hardware. 

Fig. S1.  Diffraction efficiency as functions of the number of layers and the number of pixels in each layer. The solid red line is the diffraction efficiency of the first spot as a function of the number of layers with 256×256 pixels. The solid green line is the diffraction efficiency of the second spot as a function of the number of layers with 256×256 pixels. The dashed red line is the diffraction efficiency of the first spot as a function of the number of layers with 1024×1024 pixels. The dashed green line is the diffraction efficiency of the second spot as a function of the number of layers with 1024×1024 pixels.       This result, like all other results, confirms the hypothesis that 3D diffractive optics indeed provides additional degrees of freedom to enhance system performance such as diffraction efficiency. One 
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