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This document provides supplementary materials to the Research Article “Nonreciprocal Cavities and the 
Time-Bandwidth Limit,” https://doi.org/10.1364/OPTICA.6.000104. We present additional derivations for the 
identities given in the main text, details on the nonreciprocal waveguide and cavity geometries, and more 
information on the simulation methods we have used to obtain our results.

1. The time-bandwidth product
Starting from Eq. 4 in the main text, the stored energy of 
the resonance is given by: 

|𝑎𝑎(𝜔𝜔)|2 = �𝐤𝐤T𝐬𝐬+�
2

(𝜔𝜔−𝜔𝜔0)2+𝛾𝛾2
.    (S1) 

The full-width, half-maximum of this Lorentzian curve 
is given by 2𝛾𝛾. Similarly, from Eq. 1 in the main text, it 
follows that if the cavity has a nonzero amplitude 𝑎𝑎0 at 𝑡𝑡 =
0 without the presence of an incoming wave, it evolves in 
time as 

𝑎𝑎(𝑡𝑡) = 𝑎𝑎0 exp(𝑖𝑖𝜔𝜔0𝑡𝑡) exp (−𝛾𝛾𝑡𝑡).      (S2) 
Here, the lifetime of the resonance Δ𝑡𝑡 is given by the 

time it takes the resonance amplitude to reach |𝑎𝑎0|𝑒𝑒−1: 
Δ𝑡𝑡 = 1/𝛾𝛾. Taking the product of the lifetime and 
bandwidth, we thus find Δ𝑡𝑡Δ𝜔𝜔 = 2.  

2. Proofs for nonreciprocal CMT identities
Here we provide proofs for the identities shown in the

main text, which we repeat here for clarity 
𝐂𝐂� = 𝐂𝐂T      (5a) 
�̃�𝐝 = 𝐤𝐤 (5b) 
�̃�𝐤 = 𝐝𝐝      (5c) 
γ�𝑟𝑟 = γr        (5d) 

𝐂𝐂T𝐝𝐝∗ = −𝐤𝐤  (5e) 
𝐝𝐝†𝐝𝐝 =  𝐤𝐤†𝐤𝐤.    (5f) 

Before proving these relationships, it is important to 
point out the consequence of a time-reversal operation on 
general amplitudes of the mode and cavity amplitudes: 
performing a time-reversal operation leads to 𝑇𝑇: 𝐬𝐬+ → 𝐬𝐬−∗ , 
𝑇𝑇: 𝐬𝐬− → 𝐬𝐬+∗ , and 𝑇𝑇: 𝑎𝑎 → 𝑎𝑎∗, since it effectively conjugates 
the temporal exponent in each amplitude and reverses the 
direction of any vector (such as the propagation vector). In 
the following we provide the proofs not in order of Eqs. 5, 
but in an order that makes more sense with respect to 
interdependencies. These proofs are based on the 
assumption that the mode profile and frequency are not 
affected by the time-reversal operation, and for Eqs. 4b,c,e 
closely follow the proofs for the reciprocal system [1].  

Eq. 5a: 𝐂𝐂� = 𝐂𝐂𝐓𝐓 
The first relationship can be proven simply by 

considering reflection strongly detuned from resonance, so 
that 𝐬𝐬− = 𝐂𝐂𝐬𝐬+. Under a time-reversal operation, we then 
find 𝐬𝐬+∗ = 𝐂𝐂�𝐬𝐬−∗ . Taking the conjugate, left-multiplying by 
�𝐂𝐂�∗�−𝟏𝟏, and using that 𝐂𝐂 is unitary if the direct pathway is 
lossless, we find  𝐂𝐂� = 𝐂𝐂T.  

Eq. 5d: 𝛄𝛄�𝒓𝒓 = 𝛄𝛄𝐫𝐫 
To prove Eq. 5d, we again invoke the time-reversed 

scenario of a decaying cavity. Without input, 𝐬𝐬+ = 0, there 
are no reflections in the time-reversed case: 𝐬𝐬�− = 𝐬𝐬+∗ = 0. 
Also, as mentioned earlier, the incident signal in the time-
reversed case is 𝐬𝐬�+ = 𝐬𝐬−∗ . Hence, we can write for Eq. 2: 
𝐂𝐂�𝐬𝐬−∗ + �̃�𝐝𝑎𝑎∗ = 0. Given that 𝐬𝐬−∗ = 𝐝𝐝∗𝑎𝑎∗, we find 𝐂𝐂�𝐝𝐝∗ = −�̃�𝐝, 
which, when invoking unitarity of 𝐂𝐂, yields �̃�𝐝†�̃�𝐝 = 𝐝𝐝†𝐝𝐝, 
and thus Eq. 5d.  
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Eqs. 5b,c: �̃�𝐝 = 𝐤𝐤 and �̃�𝐤 = 𝐝𝐝 
To prove Eqs. 4b,c, consider a lossless cavity with an 

initial amplitude decaying into the ports, while 𝐬𝐬+ = 0. In 
this scenario, both 𝑎𝑎 and 𝐬𝐬− decay exponentially with 
complex frequency 𝜔𝜔0 − 𝑖𝑖𝛾𝛾. If we then reverse time, we 
excite the cavity with an exponentially growing wave with 
amplitude 𝐬𝐬�+ = 𝐬𝐬−∗  and frequency 𝜔𝜔0 + 𝑖𝑖𝛾𝛾. Now, starting 
from the equation of motion (𝑖𝑖𝜔𝜔 − 𝑖𝑖ω0 + γ)𝑎𝑎 = 𝐤𝐤T𝐬𝐬+, we 
find for the time-reversed scenario at frequency 𝜔𝜔 = 𝜔𝜔0 +
𝑖𝑖γ� 

(−𝑖𝑖(ω0 + 𝑖𝑖γ�) + 𝑖𝑖ω0 + γ)𝑎𝑎∗ = �̃�𝐤T𝐬𝐬−∗ . (S3) 
Using γ = γr and γ�r = γr (which we have just shown), 

yields 2γr = �̃�𝐤T𝐝𝐝∗. Taking the complex conjugate of 2γr =
�̃�𝐤T𝐝𝐝∗ and combining it with 2γr = 𝐝𝐝†𝐝𝐝, we find 

(�̃�𝐤† − �̃�𝐝†)𝐝𝐝 = 0. (S4) 
As long as 𝐝𝐝 is a non-zero vector, this implies �̃�𝐤 = 𝐝𝐝. 

Starting from the time-reversed scenario and following the 
same analysis, we can also confirm that  �̃�𝐝 = 𝐤𝐤.  

Eq. 5e: 𝐂𝐂𝐓𝐓𝐝𝐝∗ = −𝐤𝐤 
In the derivation for Eq. 5d we showed that 𝐂𝐂�𝐝𝐝∗ = −�̃�𝐝. 

Combining this result with Eq. 5b,  �̃�𝐝 = 𝐤𝐤 , we imme-
diately find Eq. 5e.  

Eq. 5f: 𝐝𝐝†𝐝𝐝 =  𝐤𝐤†𝐤𝐤 
Finally, by using the fact that 𝐂𝐂 is unitary, we obtain Eq. 

5f from Eq. 5e: 𝐝𝐝†𝐝𝐝 =  𝐤𝐤†𝐤𝐤. It is interesting to point out 
that there are various ways to derive this fluctuation-
dissipation relation: one may also prove it using balance of 
power, or more rigorously, using stochastic methods [2]. 
Furthermore, it is important to point out that in the case 
of internal absorption, 𝛾𝛾𝑖𝑖 > 0, the full fluctuation-
dissipation relation needs to be amended to include 
absorptive dissipation as well. 

In this context, we should stress that while these proofs 
rely on the unitarity of 𝐂𝐂, the relations in Eq. 5 can also be 
more generally applied to lossy systems by considering loss 
as (an) additional port(s). This is specifically demonstrated 
by a heuristic derivation of Eq. 5e for the system with a 
dissipative wedge mode in Section 5 of the Supplementary 
Information.  

3. Details of cavity geometries and materials
The unidirectional waveguides we use to study non-

reciprocal cavities are based on the work by Shen et al. 
[3,4]. The materials used in all of our simulations are the 
same: silicon (Si) and indium-antimonide (InSb). We use a 
constant permittivity for Si: 𝜀𝜀𝑆𝑆𝑖𝑖 = 11.68 𝜀𝜀0, and for InSb 
we use the transversely (�̂�𝑧) magnetized permittivity tensor 
[3]: 

𝛆𝛆𝐼𝐼𝐼𝐼𝑆𝑆𝐼𝐼 = 𝜀𝜀0𝜀𝜀∞ �
𝜀𝜀1 𝑖𝑖 𝜀𝜀2 0

−𝑖𝑖 𝜀𝜀2 𝜀𝜀1 0
0 0 𝜀𝜀3

� (S5) 

where 𝜀𝜀∞ = 15.6 𝜀𝜀0 and  

𝜀𝜀1 = 1 −
(𝜔𝜔+𝑖𝑖𝑖𝑖)𝜔𝜔𝑝𝑝2

𝜔𝜔((𝜔𝜔+𝑖𝑖𝑖𝑖)2−𝜔𝜔𝑐𝑐2)
 (S6a) 

𝜀𝜀2 = 𝜔𝜔𝑐𝑐𝜔𝜔𝑝𝑝2

𝜔𝜔((𝜔𝜔+𝑖𝑖𝑖𝑖)2−𝜔𝜔𝑐𝑐2)
 (S6b) 

𝜀𝜀3 = 1 − 𝜔𝜔𝑝𝑝2

𝜔𝜔((𝜔𝜔+𝑖𝑖𝑖𝑖)2+𝑖𝑖𝑖𝑖)
(S6c) 

Here 𝜔𝜔𝑝𝑝 = 4 𝜋𝜋 × 1012 rad/s is the plasma frequency, 𝜈𝜈 =
5 × 10−3𝜔𝜔𝑝𝑝 rad/s is the collision frequency, and 𝜔𝜔𝑐𝑐 =
𝑒𝑒𝑒𝑒/𝑚𝑚 = 0.25𝜔𝜔𝑝𝑝 is the cyclotron frequency (corresponding 
to a static magnetic field bias of 0.25 T in the −�̂�𝑧 direction). 

In all simulations the waveguide has the same 
dimensions: the total height of the waveguide is 30 µm, 
filled with 18 µm of InSb at the bottom and 12 µm of Si at 
the top. The bottom and top walls of the waveguide are 
perfect electric conductors (see the next section). The 
dispersion of this single-mode waveguide is shown in Fig. 
S1, both without magnetic bias (black dashed lines) and 
with magnetic bias (orange solid lines). The unidirectional 
regime, where there is only propagation in the positive 
direction, is clearly visible. 

For Fig. 2 in the main text we place a cavity behind the 
termination of the waveguide, which is 20 × 30 µm and 
resonant at 1.52 THz. The cavity is connected to the 
waveguide through a small opening with height of 0.5 µm 
and a width of 0.1 µm. See Fig. S2a for a schematic 
drawing of this geometry. We operate the waveguide in the 
unidirectional regime, with a pulse centered at 1.5 THz 
and a bandwidth of 0.16 THz (see next section). 

For Fig. 3 in the main text, we operate the waveguide in 
the bidirectional regime, below ~1.25 THz [4]. We increase 
the cavity size to 20 × 35.4 µm so that it is resonant at 1.24 
THz, and while we maintain the opening at the same 
position in the waveguide (3 µm) from the top wall, we shift 
the cavity upwards so that the opening is closer to the 
middle of the cavity (which increases the cavity Q-factor). 
The displacement between the middle plane of the cavity 

Fig. S1: Dispersion of the surface plasmon. Without magnetic bias the 
dispersion is shown by the dashed black curve, and is symmetric about 
k=0. By biasing the sample with a magnetic field, propagation forward 
and backward obtain different dispersion curves. Over a large range of 
frequencies (almost 0.5 THz) there is a unidirectional gap. The operating 
frequencies for Fig. 2 and Figs. 3,4 are shown with the gray curves, and 
the light cone is shown in blue. The propagation vector is normalized to 
the wavenumber at the plasma frequency 𝜔𝜔𝑝𝑝 = 4𝜋𝜋 1012 rad/s. 
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and the middle of the opening is 2 𝜇𝜇m. For simplicity of 
analysis (see Section 4) we set the collision frequency to 0 
but have changed the PEC termination to a lossy 
impedance boundary condition with a conductivity of 104 
S/m and 𝜀𝜀 = 𝜀𝜀0. See Fig. S2b for schematic details on this 
geometry. 

The final geometry we have studied, discussed in Fig. 4 
in the main text, has identical features to the previous 
cavity, except that the cavity is now positioned on top of 
the waveguide and that the conductivity of the 
termination has been reduced to 2093 S/m. The cavity 
opening is centered 60 µm away from the termination, 
where there is a zero in the magnetic field (see Fig. S2c).  

4. Anisotropic FDTD algorithm 
To perform full-wave simulations of the cavity in the 

time-domain we employ a home-built FDTD algorithm. 
For the geometries of interest, it is important for the 
algorithm to support i) Drude-model dispersion, and ii) 
anisotropic materials. To incorporate anisotropic Drude 
dispersion, we employ the auxiliary differential equation 
(ADE) method, which captures the dispersion in an 
additional equation for the current density [5] but 
implemented so that it supports anisotropic materials. 
Starting from Ampere’s law in differential form: 

𝛁𝛁 × 𝐇𝐇 = 𝜀𝜀0
𝜕𝜕
𝜕𝜕𝜕𝜕
𝐄𝐄 + 𝐉𝐉,  (S7) 

where  
𝐉𝐉 = 𝑖𝑖𝜔𝜔𝐏𝐏 = 𝑖𝑖𝜔𝜔𝜀𝜀0𝛘𝛘𝐞𝐞𝐄𝐄.   (S8) 

From the permittivity of InSb in Supplementary Section 
3, we can write for the susceptibility: 

𝛘𝛘𝐞𝐞 = 𝜀𝜀∞𝜔𝜔𝑝𝑝2

𝜔𝜔�(𝜔𝜔+𝑖𝑖𝑖𝑖)2−𝜔𝜔𝑐𝑐2�
�−(𝜔𝜔 + 𝑖𝑖𝜈𝜈) 𝑖𝑖𝜔𝜔𝑐𝑐

−𝑖𝑖𝜔𝜔𝑐𝑐 −(𝜔𝜔 + 𝑖𝑖𝜈𝜈)�, (S9) 

so we find for the current density: 

𝐉𝐉 = 𝜀𝜀0𝜀𝜀∞𝜔𝜔𝑝𝑝2

�(𝜔𝜔+𝑖𝑖𝑖𝑖)2−𝜔𝜔𝑐𝑐2�
�−𝑖𝑖(𝜔𝜔 + 𝑖𝑖𝜈𝜈) −𝜔𝜔𝑐𝑐

𝜔𝜔𝑐𝑐 −𝑖𝑖(𝜔𝜔 + 𝑖𝑖𝜈𝜈)� 𝐄𝐄 (S10) 

Inverting the matrix in this equation to bring it to the 
other side: 

−1
(𝜔𝜔 + 𝑖𝑖𝜈𝜈)2 − 𝜔𝜔𝑐𝑐2

�−𝑖𝑖
(𝜔𝜔 + 𝑖𝑖𝜈𝜈) −𝜔𝜔𝑐𝑐
𝜔𝜔𝑐𝑐 −𝑖𝑖(𝜔𝜔 + 𝑖𝑖𝜈𝜈)� 𝐉𝐉 = 

𝜀𝜀0𝜀𝜀∞𝜔𝜔𝑝𝑝2

(𝜔𝜔+𝑖𝑖𝑖𝑖)2−𝜔𝜔𝑐𝑐2
𝐄𝐄 (S11) 

Cancelling out the denominator, and using 𝑖𝑖𝜔𝜔𝐉𝐉 → 𝜕𝜕𝐉𝐉
𝜕𝜕𝜕𝜕

, we 
finally find: 

𝝏𝝏
𝝏𝝏𝝏𝝏
𝐉𝐉 + �

−𝜈𝜈 −𝜔𝜔𝑐𝑐
𝜔𝜔𝑐𝑐 −𝜈𝜈 � 𝐉𝐉 = 𝜀𝜀0𝜀𝜀∞𝜔𝜔𝑝𝑝2𝐄𝐄.  (S12) 

This auxiliary differential equation incorporates the 
dispersion, and when converted into an update equation it 
can be added to a regular FDTD algorithm. We use the 
material parameters as presented in the previous section, 
and a mesh of 10 by 10 nm. 

5. Heuristic derivation of CMT for cavity and 
nonreciprocal waveguide 

In the unidirectional waveguide discussed in Fig. 2 in 
the main text there is no reflected power over the whole 
frequency range of interest, and the direct reflection 
coefficient C is therefore 0. We thus obtain an additional 
coefficient for the direct excitation of the wedge mode 
(which is responsible for absorbing the incident power), 
|𝐶𝐶𝑤𝑤|2 = 1 − |𝐶𝐶|2, so that without the cavity the power 
absorbed by the wedge mode is 𝑃𝑃𝑤𝑤 = |𝐶𝐶𝑤𝑤𝑠𝑠+|2. While there 
is no backwards mode, even in the case of a lossless cavity 
as in Fig. 2 in the main text, the resonance can (and must 
be able to) dissipate power by exciting the wedge mode, 
which for the cavity results in an additional loss rate 𝛾𝛾𝑤𝑤: 

 
Figure S2: (a) Schematic for the first cavity discussed in the main text (and in Fig. 1), where the inset shows the geometry of the cavity opening. (b) 
Schematic for the second system discussed in the main text (and in Fig. 2), where almost everything is identical as in the previous cavity except for 
a displacement of the cavity and a larger size. (c) The cavity is the same as in (b), except that now the cavity is on top and slightly displaced from the 
opening. In the waveguide, the opening is placed at a position where the forward and backward fields cancel out. 
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𝑑𝑑
𝑑𝑑𝜕𝜕
𝑎𝑎 = (𝑖𝑖ω0 − 𝛾𝛾𝑟𝑟 − 𝛾𝛾𝑖𝑖 − 𝛾𝛾𝑤𝑤)𝑎𝑎 + 𝑘𝑘𝑟𝑟𝑠𝑠+. (S13) 

It turns out that it is crucial to consider that both the 
incident wave and the resonance can excite the wedge 
mode, and that in due process they can thus interfere. The 
total power absorbed by the wedge mode in general is 
therefore given by 

𝑃𝑃𝑤𝑤 = |𝐶𝐶𝑤𝑤𝑠𝑠+ + 𝑑𝑑𝑤𝑤𝑎𝑎|2   (S14) 
where 𝑑𝑑𝑤𝑤 relates the excitation of the wedge mode to the 
cavity amplitude, with |𝑑𝑑𝑤𝑤|2 = 2𝛾𝛾𝑤𝑤 (which can be shown 
from balance of power in the case that 𝛾𝛾𝑟𝑟 = 𝛾𝛾𝑖𝑖 = 0). If we 
then reconsider balance of power 

|𝑠𝑠+|2 = |𝑠𝑠−|2 + 2𝛾𝛾𝑖𝑖|𝑎𝑎|2 + 𝑃𝑃𝑤𝑤,     (S15) 
and substitute 𝒔𝒔− and 𝑷𝑷𝒘𝒘: 

|𝑠𝑠+|2 = |𝐶𝐶𝑠𝑠+ + 𝑑𝑑𝑟𝑟𝑎𝑎|2 + 2𝛾𝛾𝑖𝑖|𝑎𝑎|2 + |𝐶𝐶𝑤𝑤𝑠𝑠+ + 𝑑𝑑𝑤𝑤𝑎𝑎|2, (S16) 
which becomes 

|𝑠𝑠+|2 = (|𝐶𝐶|2 + |𝐶𝐶𝑤𝑤|2)|𝑠𝑠+|2 + 2(𝛾𝛾𝑖𝑖 + 𝛾𝛾𝑟𝑟 + 𝛾𝛾𝑤𝑤)|𝑎𝑎|2  
+2Re(𝐶𝐶∗𝑠𝑠+∗𝑑𝑑𝑟𝑟𝑎𝑎) + 2Re(𝐶𝐶𝑤𝑤∗ 𝑠𝑠+∗𝑑𝑑𝑤𝑤𝑎𝑎).  (S17) 

Grouping together and dividing out the input wave leads 
to  

(𝛾𝛾𝑖𝑖 + 𝛾𝛾𝑟𝑟 + 𝛾𝛾𝑤𝑤)|𝑎𝑎|2  + Re(𝐶𝐶∗𝑠𝑠+∗𝑑𝑑𝑟𝑟𝑎𝑎) 
+Re(𝐶𝐶𝑤𝑤∗ 𝑠𝑠+∗𝑑𝑑𝑤𝑤𝑎𝑎) = 0.  (S18) 

Inserting the equation for the cavity amplitude and setting 
𝜔𝜔 = 𝜔𝜔0, we find: 

(𝛾𝛾𝑖𝑖 + 𝛾𝛾𝑟𝑟 + 𝛾𝛾𝑤𝑤)|𝑘𝑘𝑟𝑟𝑠𝑠+|2

(𝛾𝛾𝑖𝑖 + 𝛾𝛾𝑟𝑟 + 𝛾𝛾𝑤𝑤)2 
+ Re �

𝐶𝐶∗𝑠𝑠+∗𝑑𝑑𝑘𝑘𝑟𝑟𝑠𝑠+
(𝛾𝛾𝑖𝑖 + 𝛾𝛾𝑟𝑟 + 𝛾𝛾𝑤𝑤)

� 

+Re �𝐶𝐶𝑤𝑤
∗ 𝑠𝑠+∗ 𝑑𝑑𝑤𝑤𝑘𝑘𝑟𝑟𝑠𝑠+

(𝛾𝛾𝑖𝑖+𝛾𝛾𝑟𝑟+𝛾𝛾𝑤𝑤)
� = 0,  (S19) 

which becomes 
𝑘𝑘𝑟𝑟∗𝑘𝑘𝑟𝑟 + Re(𝐶𝐶∗𝑑𝑑𝑘𝑘𝑟𝑟) + Re(𝐶𝐶𝑤𝑤∗ 𝑑𝑑𝑤𝑤𝑘𝑘𝑟𝑟) = 0.  (S20) 

Considering that 𝑘𝑘𝑟𝑟∗𝑘𝑘𝑟𝑟 is real, we can write: 
−𝑘𝑘𝑟𝑟∗ = 𝐶𝐶𝑤𝑤∗ 𝑑𝑑𝑤𝑤 + 𝐶𝐶∗𝑑𝑑.  (S21) 

This equation is equivalent to Eq. 5d in the main text for 
this two-port system and it demonstrates that k and d can 
indeed be different, as also observed in the simulation, as 
long as there is an additional channel. In the case that d=0 
(when the waveguide is unidirectional), we again find that 
|𝑘𝑘𝑟𝑟| = |𝑑𝑑𝑤𝑤|, which means that power can enter the cavity 
at the same rate that the cavity can dissipate it via the 
wedge mode. 

We stress again that it is crucial for the input and cavity 
to be able to interfere at the wedge. If this were not the 
case, and for example the wedge mode would dissipate 
incoherently as 𝑃𝑃𝑤𝑤 = |𝐶𝐶𝑤𝑤𝑠𝑠+|2 + |𝑑𝑑𝑤𝑤𝑎𝑎|2, this would result 
again in the requirement |𝑑𝑑𝑟𝑟| = |𝑘𝑘𝑟𝑟|. In fact, in this 
scenario it is not necessary to consider the term 𝛾𝛾𝑤𝑤 
separately from 𝛾𝛾𝑖𝑖, and a general description can be 
obtained without explicit consideration of 𝑃𝑃𝑤𝑤 and 𝛾𝛾𝑟𝑟. This 
fact makes the wedge mode alike an additional channel, 
rather than simply an additional dissipative process. 

6. Using COMSOL for nonreciprocal waveguides 
For the results in Figs. 3,4 (as well as the intensity plots 

in Fig. 2) in the main text we use COMSOL rather than 
our FDTD algorithm, because we are interested in 
complex amplitudes of the ingoing and outgoing waves 
with respect to the cavity amplitude. In the following we 
describe how to use COMSOL for simulations with 
nonreciprocal media and the fitting procedure to obtain 
the coefficients discussed in the main text. For reciprocal 
media it would be most convenient to use COMSOL port 
boundary condition to launch and accept incoming and 
outgoing modes and to determine the reflection coefficient 
from the structure. However, COMSOL’s numerical ports 
do not work with nonreciprocal waveguides, because the 
incoming and outgoing modes are different. We therefore 
applied the following procedure to obtain the complex 
mode and cavity amplitudes, assuming that we are 
modeling one of the structures in Fig. S2: 

 
1. Create the geometry and add a port on the left end of 

the waveguide, with “wave excitation” set to “on”. 
2. To the left of where this port is, add a small second 

domain that is essentially an extension of the 
waveguide. Create a second Electromagnetic Waves, 
Frequency Domain that applies only to this domain 
and make sure that in the main physics domain this 
waveguide extension is excluded. 

3. In the second physics domain, set this waveguide 
extension up so that there is a port on the right 
boundary (overlapping with the port in the main 
physics domain). All other boundaries can be PEC. 

4. Back in the first domain, add a second port on the 
same boundary, set it to a user defined port and 
modify the expressions for the electric mode field and 
propagation constant so that they are obtained from 
the other physics domain: e.g. “emw2.tEmodex_3”, 
etc. Make sure wave excitation is set to “off” in this 
port. In this main physics domain there are now 
separate ports for ingoing and outgoing modes. 

5. Although not strictly necessary (and slightly more 
complicated), it is possible to modify the weak 
expressions in the launching port so that it does not 
try to accept the returning mode. It requires adding 
an additional port for the electric field (following a 
similar procedure as before, but now in the same 
physics domain), and then add 0* 
 before all if’s in emw.PortConstrx, 
emw.PortConstry, emw.PortConstrz, 
emw.PortConstrx_weak, emw.PortConstry_weak, 
emw.PortConstrz_weak, and the weak expression for 
the domain computation.  

6. Use an overlap integral on the input boundary to 
determine the input and output phase and 
amplitudes. Because these modes are nonreciprocal, 
the overlap integral is different [6]: 

𝑐𝑐𝑚𝑚 = ∬(ETm×HT + ET×HTm)⋅z�𝑑𝑑A
2∬(ETm×HTm)⋅z�𝑑𝑑A

  (S22) 
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Here, 𝐄𝐄Tm and 𝐇𝐇Tm are the transverse mode profiles, 
while 𝐄𝐄T and 𝐇𝐇T are the transverse field profiles of 
the full solution. 
 

7. Having obtained the input and output complex 
amplitudes, we can obtain the complex cavity 
amplitude from an integral over the stored 
electromagnetic energy in the cavity (due to the small 
opening and PEC walls virtually no energy is stored 
outside of the cavity) for the amplitude, and a field 
monitor in the center of the cavity for the phase. 

7. Fitting simulations with the coupled-mode theory 
model 

 We now describe the fitting procedure to obtain the 
complex coefficients reported in the main text. First, 
starting with the system shown in Fig. S2b but without a 
magnetic field bias (so that it is reciprocal), we perform a 
frequency sweep for three different cavity sizes: one for the 
resonant cavity size (20 × 35.4 𝜇𝜇m), and for cavity sizes 
one micron longer and shorter. We use these non-resonant 
cavities to determine the direct reflection path, by 
averaging 𝐶𝐶 = 𝑆𝑆−/𝑆𝑆+ for both simulations. Then, we 
obtain 𝜔𝜔0 and 𝛾𝛾 from a lorentzian fit of the stored energy 
in the cavity, which is shown in Fig. S3a: 𝜔𝜔0 = 1.24 THz 
and 𝛾𝛾 = 96.7 MHz. To obtain 𝑘𝑘𝑟𝑟 we then proceed to the 
complex cavity amplitude, which we fit using  

𝑎𝑎 = 𝑘𝑘𝑟𝑟𝑠𝑠+
𝑖𝑖(𝜔𝜔−𝜔𝜔0)+𝛾𝛾

.   (S23) 

We use 𝜔𝜔0 and 𝛾𝛾 from the previous fit and 𝑠𝑠+ is input 
from COMSOL, and hence only 𝑘𝑘𝑟𝑟 is a fitting parameter 
(shown in red). The fit of the complex cavity amplitude is 
shown in Fig. S3b, for 𝑘𝑘𝑟𝑟 = (2.22 − 1.78) × 104 �rad/s.  

To obtain 𝑑𝑑𝑟𝑟 we fit the reflected amplitude: 
𝑠𝑠− = 𝐶𝐶𝑠𝑠+ + 𝑑𝑑𝑟𝑟𝑎𝑎.   (S24) 

Here, again, 𝑑𝑑𝑟𝑟 is the only fit parameter (shown in red), 
and the rest we have obtained directly from COMSOL. 
Fig. S3c shows the resulting fit, for 𝑑𝑑𝑟𝑟 = (2.22 − 1.79) ×
104 �rad/s. As expected, 𝑘𝑘𝑟𝑟 = 𝑑𝑑𝑟𝑟 but for a very small 
difference (the ratio is 𝑑𝑑𝑟𝑟

𝑘𝑘𝑟𝑟
= 1.0010 − 0.0007𝑖𝑖). The small 

differences most likely originate from estimating 𝐶𝐶 (by 
changing the cavity size) and 𝑎𝑎 (by assuming that all of the 
stored energy is inside the cavity). The fact that we find  
𝑘𝑘𝑟𝑟 = 𝑑𝑑𝑟𝑟 in the reciprocal regime thus validates our 
method. If we now turn the magnetic field bias on again, 
we find the fits shown in Figs. S3d-e, with 𝜔𝜔0 = 1.24 THz 
and 𝛾𝛾 = 81.2 MHz (indicating that the decay rate has 
changed, which is to be expected given the change in the 
waveguide mode field profiles). By fitting the complex 
cavity and reflection amplitudes we find 𝑘𝑘𝑟𝑟 = (2.65 +
0.308) × 104 �rad/s and 𝑑𝑑𝑟𝑟 = (0.667 + 2.14) ×
104 �rad/s. Now, clearly, the values are different: their 
ratio is 𝑑𝑑𝑟𝑟

𝑘𝑘𝑟𝑟
= 0.34 + 0.77𝑖𝑖. 

 
Figure S3: Fits of the stored energy (a), complex mode amplitude (b), and reflected amplitude (c) of a reciprocal cavity (without a magnetic bias). 
The bottom row of plots (d-e) shows the same, except for a nonreciprocal cavity (magnetic bias turned on). In all cases the fit is excellent, while 
fitting only one parameter (b,c,e,f). In (a,d) we fit three parameters: the loss rate, center frequency, and maximum stored energy (which we don’t 
use in our analysis). 
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8. Effective input and output coefficients 
In Fig. 4 in the main text we investigate a cavity coupled 
to a waveguide with a junction/termination at a different 
location, and we consider the signal transmitted through 
the junction (or dissipated in the termination) as a direct 
output port of the cavity. In reality, the cavity couples to 
left- and right-propagating waveguide modes, the latter of 
which undergoes multiple reflections between the 
termination and the cavity. Here, we will show that one 
can write effective coupling coefficients that still follow the 
time-reversal rules in Eqs. 5b,c. 

Consistent with the schematic in Fig. S4, we consider a 
cavity with resonant amplitude 𝑎𝑎 that decays into a 
waveguide with coefficients 𝑑𝑑1 and 𝑑𝑑2. We assume that the 
coupling of the cavity to the waveguide represents a 
negligible perturbation of the off-resonant excitation, so 
that the direct scattering matrix is simply the backward 
identity matrix. We then find for the waveguide section 
containing the cavity: 

 

�
𝑠𝑠1−

𝑠𝑠2+
� = �0 1

1 0� �
𝑠𝑠1+
𝑠𝑠2−
� + �𝑑𝑑1𝑑𝑑2

� 𝑎𝑎.  (S25) 

 
We may express this relation in terms of a scattering 

matrix 𝐒𝐒 by inserting Eq. 4 in the main text: 
 

𝐒𝐒 = �0 1
1 0� + 𝒅𝒅𝒌𝒌T

𝑖𝑖(𝜔𝜔0−𝜔𝜔)−𝛾𝛾
.  (S26) 

 
Then, to find the effective output coupling coefficients, 

we simply solve for the cavity amplitude due to excitation 
at 𝑠𝑠1+ or 𝑠𝑠3−, considering the full system. Starting with 
excitation from 𝑠𝑠3−, we find by taking multiple reflections 
into account: 

 
𝑎𝑎 ∝ 𝑘𝑘2𝑠𝑠2− = 𝑘𝑘2(𝐶𝐶12𝑒𝑒𝑖𝑖𝑘𝑘

−𝐿𝐿𝑠𝑠3− + 

𝐶𝐶12𝑒𝑒𝑖𝑖𝑘𝑘
−𝐿𝐿𝑆𝑆22𝑒𝑒−𝑖𝑖𝑘𝑘

+𝐿𝐿𝐶𝐶11𝑒𝑒𝑖𝑖𝑘𝑘
−𝐿𝐿𝑠𝑠3− + ⋯ )  (S27) 

 
Here we distinguish, due to nonreciprocity between 

propagation constants in the forward (+) and backward (-) 

direction. Writing 𝑘𝑘Δ = 𝑘𝑘+ − 𝑘𝑘−, we can more concisely 
write for the effective coupling coefficient: 

 

𝑘𝑘3,𝑒𝑒𝑒𝑒𝑒𝑒 = 𝑘𝑘2𝐶𝐶12𝑒𝑒𝑖𝑖𝑘𝑘
−𝐿𝐿

1−𝑆𝑆22𝐶𝐶11𝑒𝑒−𝑖𝑖𝑘𝑘Δ𝐿𝐿
  (S28) 

 
Likewise, following a similar procedure for excitation 

from port 𝑠𝑠1+, we find: 
 

𝑎𝑎 ∝ 𝑘𝑘1𝑠𝑠1+ + 𝑘𝑘2𝑠𝑠2− = 𝑘𝑘1𝑠𝑠1+ + 𝑘𝑘2(𝐶𝐶11𝑒𝑒−𝑖𝑖𝑘𝑘Δ𝐿𝐿 +  
(𝐶𝐶11𝑒𝑒−𝑖𝑖𝑘𝑘Δ𝐿𝐿)2𝑆𝑆22 + (𝐶𝐶11𝑒𝑒−𝑖𝑖𝑘𝑘Δ𝐿𝐿)3𝑆𝑆222 + ⋯ )𝑆𝑆21𝑠𝑠1+, (S29) 
 
which leads to 
 

𝑘𝑘1,𝑒𝑒𝑒𝑒𝑒𝑒 = 𝑘𝑘1 + 𝑘𝑘2𝐶𝐶11𝑒𝑒−𝑖𝑖𝑘𝑘Δ𝐿𝐿𝑆𝑆21
1−𝑆𝑆22𝐶𝐶11𝑒𝑒−𝑖𝑖𝑘𝑘Δ𝐿𝐿

.            (S30) 

 
We now have expressions for the effective incoupling 

coefficients. To find the effective outcoupling coefficients, 
we start from a given cavity amplitude and determine the 
radiated power into each port: 

 
𝑠𝑠1− = 𝑑𝑑1𝑎𝑎 + 𝑆𝑆12𝐶𝐶11𝑒𝑒−𝑖𝑖𝑘𝑘Δ𝐿𝐿𝑑𝑑2𝑎𝑎 + 

𝑆𝑆12𝑆𝑆22(𝐶𝐶11𝑒𝑒−𝑖𝑖𝑘𝑘Δ𝐿𝐿)2𝑑𝑑2𝑎𝑎 + ⋯,  (S31) 
 

which leads to 

𝑑𝑑1,𝑒𝑒𝑒𝑒𝑒𝑒 = 𝑑𝑑1 + 𝑑𝑑2𝑆𝑆12𝐶𝐶11𝑒𝑒−𝑖𝑖𝑘𝑘Δ𝐿𝐿

1−𝑆𝑆22𝐶𝐶11𝑒𝑒−𝑖𝑖𝑘𝑘Δ𝐿𝐿
.       (S32) 

 
Finally, we find for the last effective coefficient: 

 

𝑠𝑠3+ = 𝐶𝐶21𝑒𝑒−𝑖𝑖𝑘𝑘
+𝐿𝐿𝑑𝑑2𝑎𝑎 + 𝐶𝐶21𝑒𝑒−𝑖𝑖𝑘𝑘

+𝐿𝐿(𝑆𝑆22𝐶𝐶11𝑒𝑒−𝑖𝑖𝑘𝑘Δ𝐿𝐿)𝑑𝑑2𝑎𝑎 + 

𝐶𝐶21𝑒𝑒−𝑖𝑖𝑘𝑘
+𝐿𝐿(𝑆𝑆22𝐶𝐶11𝑒𝑒−𝑖𝑖𝑘𝑘Δ𝐿𝐿)2𝑑𝑑2𝑎𝑎 + ⋯, (S33) 

 
which results in: 

 

𝑑𝑑3,𝑒𝑒𝑒𝑒𝑒𝑒 = 𝑑𝑑2𝐶𝐶21𝑒𝑒−𝑖𝑖𝑘𝑘
+𝐿𝐿

1−𝑆𝑆22𝐶𝐶11𝑒𝑒−𝑖𝑖𝑘𝑘Δ𝐿𝐿
.  (S34) 

 
We have now found all effective coupling coefficients, 

and can verify that the same time-reversal rules derived 
for the regular coupling coefficients still apply. Starting 
with the time-reversal equivalence between 𝐤𝐤 and �̃�𝐝, we 
reverse 𝐤𝐤𝐞𝐞𝐞𝐞𝐞𝐞 in time. This yields: 

 

𝑘𝑘�1,𝑒𝑒𝑒𝑒𝑒𝑒 = 𝑑𝑑1 + 𝑑𝑑2𝐶𝐶11𝑒𝑒−𝑖𝑖𝑘𝑘Δ𝐿𝐿𝑆𝑆12
1−𝑆𝑆22𝐶𝐶11𝑒𝑒−𝑖𝑖𝑘𝑘Δ𝐿𝐿

           (S35) 

 

𝑘𝑘�3,𝑒𝑒𝑒𝑒𝑒𝑒 = 𝑑𝑑2𝐶𝐶21𝑒𝑒−𝑖𝑖𝑘𝑘
+𝐿𝐿

1−𝑆𝑆22𝐶𝐶11𝑒𝑒−𝑖𝑖𝑘𝑘Δ𝐿𝐿
  (S36) 

Fig. S4: Schematic illustrating an equivalent system to Fig. 4 in the main 
text, where we are interested in the effective coupling coefficients 
between the cavity and ports 1 and 3 which incorporate the effect of the 
waveguide junction. 
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Here we have used Eqs. 5 in the main text (including 

that 𝐒𝐒� = 𝐒𝐒T, which holds for any scattering matrix – not 
only 𝐂𝐂). We see that �̃�𝐤𝑒𝑒𝑒𝑒𝑒𝑒 = 𝐝𝐝𝑒𝑒𝑒𝑒𝑒𝑒. Likewise, reversing 𝐝𝐝𝑒𝑒𝑒𝑒𝑒𝑒 
instead yields the analogous Eq. 5b. Similarly, 2γr =
𝐝𝐝𝑒𝑒𝑒𝑒𝑒𝑒
† 𝐝𝐝𝑒𝑒𝑒𝑒𝑒𝑒 and 𝐝𝐝𝑒𝑒𝑒𝑒𝑒𝑒

† 𝐝𝐝𝑒𝑒𝑒𝑒𝑒𝑒 = 𝐤𝐤𝑒𝑒𝑒𝑒𝑒𝑒
† 𝐤𝐤𝑒𝑒𝑒𝑒𝑒𝑒, i.e., treating this 

system comprising a cavity and a waveguide junction as a 
simple cavity with two ports is valid. It is, however, 
interesting to point out one significant difference: in 
contrast to the real coupling coefficients, the effective 
coupling coefficients are frequency dependent due to the 
finite path length between the cavity opening and the 
waveguide junction. In our simulations, the cavity 
bandwidth is narrow enough to be able to neglect the 
frequency dependence of the effective coupling coefficients. 
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