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This document provides supplementary information to "Mapping complex mode volumes with cavity
perturbation theory," https://doi.org/10.1364/OPTICA.6.000269.  It includes complementary results and 
discussions pertaining to the main article.  Section 1 discusses details of the reliability of the ΔQ-
measurements. Next, is a formal comparison of the classical perturbation formula of Eqs. (1) and (2) in 
the main article, followed by a study of the accuracy of Eq. (2) for predicting resonance shifts, and finally 
an analytical study of the domain of validity of Eq. (2) that leads to upper bounds for the maximum 
perturber strength.

https://doi.org/10.1364/OPTICA.6.000269
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 = min ( ) , ( ) ( ) , (S6a)  = min ( ) , ( ) ( ) . (S6b) Note that, to derive Eqs. (S5)-(S6), we have used the relations, Re ≫ Im  and Im ≫ Re  which are valid for high-  cavities.  The expressions of  and  can be further simplified by first noting that (1) ( ) ≫ 1 for high-Q cavity and (2) we generally have |Re( ) | ≫ Im( ) | (as confirmed by numerical simulations1) for perturbers placed in the near-field of the cavity. We finally obtain simplified expressions for  and  = ( ) , (S7a)  = min , ( ) ( ) . (S7b)  As a numerical example, we consider the two perturber positions A and C in Fig. 1a for which noticeable Δ  and Δλ changes are observed. We numerically find that = = 665  at position A, and = 702  at position B and = 541  at position C, where  denotes the static polarizability of a silica sphere with 10-nm radius in air like in the main text. For both cases,  and  have similar values, and this a posteriori explains why Eq. (2) is as accurate to predict wavelength shifts, as it is at predicting -changes. 

1 δ , and then , has been computed with COMSOL Multiphysics. A 
reasonable estimate for the typical magnitude of  is that it is essentially 
the non-resonant contribution to the full system Green function [scattered 
part strictly] on top of which the resonant cavity mode adds.  The non-
resonant background is of the same order as the Green function of free 
space for a perturber placed outside the cavity.
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