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1. THE DYNAMICS OF THE RYDBERG ATOM

In this section, we provide the theory of the many-body dynam-
ics in cold Rydberg gases. We will focus on the derivation of the
hierarchy of equations for many-body correlators provided in
the main text and its analytical solution.

A. Optical Bloch equation

We first treat the dynamics under the effective Hamiltonian in
the Heisenberg picture. To this end we obtain the equation of
motion for the expectation values ρ̂ from the corresponding op-
erator Heisenberg equations. This yields the explicit expression
of the Bloch equation

i
∂

∂t
ρ11 − iΓ12ρ22 −Ωpρ12 + Ω∗pρ21 = 0, (S1a)

i
∂

∂t
ρ22 − iΓ23ρ33 + iΓ12ρ22 + Ωpρ12 −Ω∗pρ21

−Ωcρ23 + Ω∗c ρ32 = 0, (S1b)

i
∂

∂t
ρ33 + iΓ23ρ33 + Ωcρ23 −Ω∗c ρ32 = 0, (S1c)

for diagonal elements, and(
i

∂

∂t
+ d21

)
ρ21 −Ωp(ρ22 − ρ11) + Ω∗c ρ31 = 0, (S2a)(

i
∂

∂t
+ d31

)
ρ31 −Ωpρ32 + Ωcρ21

−Na

∫
d3r′V(r′ − r)ρ33,31(r′, r, t) = 0, (S2b)(

i
∂

∂t
+ d32

)
ρ32 −Ω∗pρ31 −Ωc(ρ33 − ρ22)

−Na

∫
d3r′V(r′ − r)ρ33,32(r′, r, t) = 0, (S2c)

for non-diagonal elements. Here ραβ(r, t) ≡ 〈Ŝαβ(r, t)〉 are the
one-body correlators (one-body density matrix elements), dαβ =
∆α − ∆β + iγαβ (∆1 = 0; α, β = 1, 2, 3; α 6= β), ∆2 = ωp −
(ω2 − ω1) and ∆3 = ωp + ωc − (ω3 − ω1) are respectively the
one-photon and two-photon detunings, γαβ = (Γα + Γβ)/2 +

γcol
αβ with Γβ = ∑α<β Γαβ. Here Γαβ denotes respectively the

spontaneous emission decay rate from the state |β〉 to the state
|α〉, and γcol

αβ represents the dephasing rate reflecting the loss
of phase coherence between |α〉 and |β〉 due to, e.g., atomic
motion and the interaction between the atoms in the ground and
Rydberg states.

The last terms on the left hand side of Eq. (S2b) and Eq. (S2c),
i.e. the two-body correlators ρ33,3α(r′, r, t) ≡ 〈Ŝ33(r′, t)Ŝ3α(r, t)〉
(α = 1, 2), are contributed from the interaction between Ryd-
berg atoms, where attractive (repulsive) atomic interaction lead
to nonlocal self-focusing (self-defocusing) Kerr nonlinearities.
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Besides, there is another type of (local) nonlinearity when two-
photon detuning is non-zero (i.e. ∆3 6= 0) [1], contributed solely
from the resonant coupling between the probe field and atoms.

B. Equations and solutions for the two-body correlators

When deriving the nonlinear envelope equation (3) in the main
text, one needs to solve the equations of motion for the two-
body correlators ραβ,µν, which have no contribution at the first
order approximation [1, 2]. At second- and third-order, these
equations are given as follows:

(i) Second-order approximation. We have the equation


2ω + 2d21 0 2Ω∗c

0 2ω + 2d31 −V 2Ωc

Ωc Ω∗c 2ω + d21 + d31




ρ
(2)
21,21

ρ
(2)
31,31

ρ
(2)
31,21



=


−2 ω+d31

D(ω)

0
Ωc

D(ω)

 F2e2iθ , (S3)


d21 + d12 0 −Ωc Ω∗c

−Ω∗c Ω∗c d21 + d13 0

0 d31 + d13 Ωc −Ω∗c

−Ωc Ωc 0 d∗21 + d∗13




ρ
(2)
21,12

ρ
(2)
31,13

ρ
(2)
21,13

ρ
∗(2)
21,13



=



ω+d31
D − ω+d∗31

D(ω)∗

Ω∗c
D(ω)∗

0
Ωc

D(ω)

 |F|
2e−2ᾱz2 . (S4)

The solution of the equation is given by ρ
(2)
α1,β1 = a(2)α1,β1F2e2iθ ,

ρ
(2)
α1,1β = a(2)α1,1β|F|

2e−2ᾱz2 (α, β = 2, 3). Note that for weak non-
linear probe pulse the atom-atom interaction represented by the

vdW potential h̄V has no contribution to ρ
(2)
α1,1β, thus we have

ρ
(2)
α1,1β = ρ

(1)
α1 ρ

(1)
1β .

(ii) Third-order approximation. We have the equation

M31 Ω∗c −iΓ23 0 Ω∗c −Ωc 0 0

Ωc M32 0 −iΓ23 0 0 Ω∗c −Ωc

0 0 M33 Ω∗c −Ω∗c Ωc 0 0

0 0 Ωc M34 0 0 −Ω∗c Ωc

Ωc 0 −Ωc 0 M35 0 Ω∗c 0

−Ω∗c 0 Ω∗c 0 0 M36 0 Ω∗c

0 Ωc 0 −Ωc Ωc 0 M37 0

0 −Ω∗c 0 Ω∗c 0 Ωc 0 M38





ρ
(3)
22,21

ρ
(3)
22,31

ρ
(3)
33,21

ρ
(3)
33,31

ρ
(3)
32,21

ρ
(3)
21,23

ρ
(3)
32,31

ρ
(3)
31,23



=



−a(2)21,12 + a(2)21,21 − a(2)22

−a(2)31,12 + a(2)21,31

−a(2)33

0

a(2)21,31 − a(2)32

−a∗(2)32 − a(2)21,13

a(2)31,31

−a(2)31,13



|F(r′)|2F(r)e−2ᾱz′2 eiθ , (S5)

where M31 = ω + iΓ12 + d21, M32 = ω + iΓ12 + d31, M33 =
ω + iΓ23 + d21, M34 = ω + d31 + iΓ23−V, M35 = ω + d32 + d21,
M36 = ω + d23 + d21, M37 = ω + d32 + d31 − V and M38 =
ω + d23 + d31. Solving this equation we obtain the third order
solution

ρ
(3)
33,31 = a(3)33,31|F(r

′)|2F(r)e−2ᾱz′2 eiθ , (S6)

with

a(3)33,31 =
P0 + P1V(r′ − r) + P2V(r′ − r)2

Q0 + Q1V(r′ − r) + Q2V(r′ − r)2 + Q3V(r′ − r)3 ,

' −2|Ωc|2Ωc(2ω + d21 + d31)/|D(ω)|2
2(ω + d21)|Ωc|2 − D2(ω)[2ω + 2d31 −V(r′ − r)]

.

(S7)
Here D2(ω) = (ω + d21)(2ω + d21 + d31) − |Ωc|2, Pn and
Qn (n = 0, 1, 2, 3) are functions of the spontaneous emission
decay rate γµν, detunings ∆µ, and half Rabi frequency Ωc (they
are lengthy thus not written explicitly down here).

2. DERIVATION OF THE NONLINEAR ENVELOPE EQUA-
TION.

Here we give a simple description on the derivation of the
(3+1)D nonlinear envelope equation (3) in the main text by em-
ploying the method of multiple-scales [3, 4]. To this end, we
assume that the atoms are initially populated in state |1〉 and

so can make the asymptotic expansion: ρα1 = ∑l=0 ε2l+1ρ
(2l+1)
α1 ,

ρ32 = ∑l=1 ε2lρ
(2l)
32 , ρββ = ∑l=0 ε2lρ

(2l)
ββ with ρ

(0)
ββ = δβ1δβ1(α =

2, 3; β = 1, 2, 3), Ωp = ∑l=1 εlΩ(l)
p , where ε a parameter char-

acterizing the magnitude of Ωp. To obtain a divergence-free
expansion, all quantities on the right hand side of the expansion
are considered as functions of the multiscale variables zl = εlz
(l = 0, 1, 2), (x1, y1) = ε (x, y), and tl = εl t (l = 0, 1). Substitut-
ing the above expansion into the Maxwell-Bloch Equations, and
comparing the coefficients of εl (l = 1, 2, ...), we obtain a set of
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linear but inhomogeneous equations which can be solved order
by order.

At the first order, we obtain the solution Ω(1)
p =

F exp[i(Kz0 − ωt0)], ρ
(1)
21 = (ω + d31)Ω

(1)
p /D, and ρ

(1)
31 =

−ΩcΩ(1)
p /D, with D = |Ωc|2 − (ω + d21)(ω + d31) and other

ρ
(1)
αβ to be zero. In above expressions, K(ω) is the linear disper-

sion relation given by K(ω) = ω/c + κ12(ω + d31)/D, and F is
an envelope function of the slow variables x1, y1, z1, t1, and z2,
to be determined yet.

At the second order, we obtain the equation

i
(

∂F
∂z1

+
1

Vg

∂F
∂t1

)
= 0, (S8)

with Vg = (∂K/∂ω)−1 the group velocity of the envelope F.

Explicit expressions of the second-order solution for ρ
(2)
αβ read

a(2)21 =
i

κ12

(
1

Vg
− 1

c

)
, (S9a)

a(2)31 = − i
Ω∗c

ω + d31
D

− (ω + d21)

Ω∗c
a(2)21 , (S9b)

a(2)11 =
[iΓ23 − 2|Ωc|2 M1]M2 − iΓ12|Ωc|2 M3

−Γ12Γ23 − iΓ12|Ωc|2 M1
, (S9c)

a(2)33 =
1

iΓ12

(
M2 − iΓ12a(2)11

)
, (S9d)

a(2)32 =
1

d32

(
−Ωc

D
+ 2Ωca(2)33 + Ωca(2)11

)
, (S9e)

where ρ
(2)
α1 = a(2)α1 ∂F/∂t1exp(iθ), ρ

(2)
32 = a(2)32 |F|2exp(−2ᾱz2),

ρ
(2)
ββ = a(2)ββ |F|

2exp(−2ᾱz2)(α = 2, 3; β = 1, 2, 3) with θ =

Kz0 − ωt0, ᾱ = ε−2α = ε−2Im(K), M1 = 1/d32 − 1/d∗32,
M2 = (ω + d∗31)/D∗ − (ω + d31)/D, and M3 = 1/(D∗d∗32) −
1/(Dd32). Expressions of equations and solutions of the two-

body correlators ρ
(2)
αβ,µν are presented in Sec. 1B of the Supple-

mentary Material.
With the above solutions, we can go to the third order. We

obtain the following equation

i
∂F
∂z2
− 1

2
K2

∂2F
∂t2

1
+

c
2ωp

(
∂2

∂x2
1
+

∂2

∂y2
1

)
F−W1|F|2Fe−2ᾱz2

+
κ12NαΩ∗c

D

(∫
d3r′aa(3)33,31V(r′ − r)|F(r′)|2

)
F(r)e−2ᾱz2

= 0. (S10)

Combined Eqs. (S8) and (S10) and returning to the original vari-
ables, we obtain the Eq. (3) in the main text. Note that when
obtaining Eq. (3), for simplicity we have assumed that the spatial
length of the probe pulse in the propagation (i.e., z) direction is
much larger than the range of Rydberg-Rydberg interactions, so
that a local approximation along the z direction can be made [2].

3. OPTICAL SOLITONS IN THE LOCAL RESPONSE RE-
GION

Note that under the EIT condition (i.e. |Ωc|2 > γ21γ31) and a
large one-photon detuning ∆2, imaginary parts of the coefficients
in Eq. (3) in the main text are very small. On the other hand,
as indicated in the main text, in the local response region the

nonlocal Kerr nonlinearity is reduced into a local one. As a
result, Eq. (3) can be written as the following form

i
∂u
∂s
− sd

∂2u
∂σ2 + 2u|u|2 = −gdiff

(
∂2

∂ξ2 +
∂2

∂η2

)
u + id0u, (S11)

with s = z/(2LD), σ = τ/τ0, (ξ, η) = (x, y)/R0, u = U/U0,
gdiff = LD/Ldiff, d0 = −2LD/LA, and sd = sgn(K2) = ±1.
Here Ldiff ≡ (ωpR2

0)/c, LD ≡ τ0
2/|K̃2| and LA ≡ 1/α0 the

typical diffraction length, dispersion length, and absorption
length, respectively. Note that we have taken LD = LNL [with
LNL ≡ 1/(U2

0W̃1 + U2
0W̃2) being a typical nonlinear length], i.e.,

a balance of dispersion and nonlinearity is assumed to favor
the formation of solitons, thus the typical Rabi frequency of the
probe field is given by U0 ≡ (1/τ0)[|K̃2/(W̃1 + W̃2)|]1/2. The
tilde above corresponding quantities means taking their real
parts. Due to the EIT effect and large ∆2, we have d0 � 1, hence
the dissipation plays a negligible role; furthermore, due to large
R0 we have Ldiff (� LD), and thus gdiff � 1, which means that
the diffraction in the system can also be neglected. Ignoring
the terms on RHS of Eq. (S11) and converting to the original
variables, we obtain the bright soliton solution

Ωp =
1
τ0

√
˜|K2|

W̃
sech

[
1
τ0

(
t− z

Ṽg

)]
eiK̃0z−iz/2LD , (S12)

if K2 < 0 (i.e. sd = −1), with K̃0 = K̃|ω=0.
Choosing system parameters the same as those used in

Fig. 2(a), we obtain the numerical values of the coefficients
in Eq. (S11), given by K2 = (−1.03 + 0.06i) × 10−13cm−1s2,
W1 = (6.86 + 0.062i)× 10−18cm−1s2, W2 = (1.79 + 0.0076i)×
10−14cm−1s2. We see that the imaginary parts of these coeffi-
cients are indeed much smaller than their real parts. Taking τ0 =
1.2× 10−7 s, we obtain U0 = 2× 107 s−1, LD = LNL = 1.4 mm,
LA = 560 mm, and d0 = −0.005, which means that the dissipa-
tion effect of the system is indeed small. Additionally, because
the beam radius of the probe pulse is large (R0 = 300¯m), one
has Ldiff = 1226 mm and hence gdiff = 0.001, so the diffraction
effect [the first term on the RHS of Eq. (S11)] in the system can
indeed be neglected.

With the system parameters given above, it is easy to ob-
tain Ṽg = 9.8× 10−5c, i.e. the soliton obtained has an ultraslow
propagation velocity compared with c, the light speed in vac-
uum. Furthermore, the third-order nonlinear optical suscepti-

bility, given by χ
(3)
p = 2c|p12|2(W1 + W2)/(h̄2ωp), is estimated

to have the value (3.03 + 0.0129i)× 10−8 m2 V−2, which is 11
orders of magnitude higher than that obtained in conventional
nonlinear optical media [5]. The physical reason for such large
third-order nonlinear optical susceptibility is due to the strong
Rydberg-Rydberg interaction and the EIT effect in the system.
By using Poynting’s vector [3, 5], the maximum average power
density to generate such ultraslow optical soliton is estimated
to be P̄max = 1.2 µW. Thus, very low input power is needed for
generating such optical soliton in the system.

4. DEFINITIONS OF THE EFFICIENCY AND FIDELITY
FOR OPTICAL PULSE MEMORY

The memory quality of the LBs and LVs can be described by
the efficiency and fidelity of the memory. Following Ref. [6],
the efficiency of a memory is described by the energy ratio
between the retrieved pulse and the input pulse, i.e., η =
Iout/Iin, where Iout =

∫ ∞
Ton

dt
∫∫

dxdy |Ωout
p (x, y, t)|2, Iin =
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−∞ dt

∫∫
dxdy |Ωin

p (x, y, t)|2, Ωin
p (x, y, t) = Ωp(x, y, z, t)|z=0

and Ωout
p (x, y, t) = Ωp(x, y, z, t)|z=Lz , with Lz the medium

length in the propagation direction.
The fidelity of the memory characterizes the preservation of

the waveshape of the probe pulse when it is stored first and then
retrieved, which is defined by ζ = η J2, with J2 = I2

inter/(Iin Iout).
Here Iinter = |

∫ Toff
−∞ dt

∫∫
dxdy Ωout

p (x, y, t + ∆T)Ωin
p (x, y, t)|, ∆T

is the time interval between the peaks of the input and the
retrieved probe pulses [6].
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