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This document provides supplementary information to "Dual polarization nonlinear Fourier 
transform-based optical communication system," https://doi.org/10.1364/optica.5.000263. We 
present the mathematical derivation of the forward-backward trapezoidal algorithm for 
the Manakov system which allows the efficient compu-tation of the scattering data from 
the time domain dual polarization signal. We furthermore describe the optimization 
procedure followed in order to choose the scattering coefficients con-stellations for the 
transmission focusing on the approach we applied to minimize the peak-to-average power 
ratio of the transmitted waveform. Finally we present a brief analysis of the noise affecting 
the eigenvalue and the scattering coefficients.

1. NUMERICAL METHODS

We report here the derivation of an algorithm based on the so-
called trapezoidal discretization method that allows computing
with small numerical errors the scattering coefficients from time
domain signals in the Manakov system.
It has been explained in the main paper that in order to com-
pute the scattering coefficients a(λ) and b1,2(λ), it is required to
propagate the Jost solution φN(t, λ) from t = −∞ to t = +∞ by
integrating Eq. (5b). Among the many integration methods avail-
able, from the simple Newton integration to the more complex
Runge-Kutta method, it has been shown in [1] that the trape-
zoidal integration is one of the algorithms that provides the best
results in term of numerical precision in the nonlinear Fourier
transform (NFT) context for the single polarization case (nonlin-
ear Schrödinger equation (NLSE)). Moreover, in the same work,
it was proposed an improvement to the trapezoidal integration,
called the forward-backward method, that allows to increase the
precision in computing the discrete scattering coefficients for the
complex discrete eigenvalues. In section A, we extend the pro-
posed algorithm to the dual polarization Manakov-Zakharov-
Shabat spectral problem (MZSP). In section B the concept of
trapezoidal integration will be reviewed and following the same
procedure used in [1] we will derive the algorithm required to
compute the direct NFT for the dual polarization case.

A. The trapezoidal discretization method
The initial value problem (IVP)

dψ(t)
dt

= A(t)ψ(t), ψ(T1) = ψ0 (S1)

where A(t) is a n× n matrix, admits the closed solution

ψ(t) = exp
(∫ t

T1

A(τ)dτ

)
ψ0 (S2)

if the matrix commutes with itself A(ti)A(tj) = A(tj)A(ti) for
any given ti, tj [1]. The integral in Eq. (S2) can be computed
using the trapezoidal integration method. In this way, starting
from the initial solution ψ0 at t0 = T1, it is possible to numeri-
cally compute the solution at an instant tN = T2 by discretizing
the time axis in N sections of length h = (T2 − T1)/N and com-
puting the integral as

ψ(T2) = exp

{
h

N

∑
n=0

1
2
[A(tn) + A(tn+1)]

}
ψ0 + Re

=

[
N

∏
n=0

e
h
2 A(tn)e

h
2 A(tn+1)

]
ψ0 + Re

= e
h
2 A(t0)

[
N−1

∏
n=1

ehA(tn)

]
e

h
2 A(tN)ψ0 + Re (S3)
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being Re the truncation error.
If Ã(t) is a piecewise constant matrix defined as

Ã(t) =


A(t1) T1 ≤ t < T1 + h/2

A(tn) T1 + nh− h/2 ≤ t < T1 + nh + h/2

A(t2) T2 − h/2 ≤ t < T2

(S4)

than the solution ψ(T2) for A = Ã(t) computed using the trape-
zoidal integration rule is the exact solution of Eq. (S2) (Re = 0).
If A(t) does not satisfy the commutation property, then we can
approximate it with Ã and compute the approximate solution
with the trapezoidal rule.

As explained in the main paper, in order to compute the
direct NFT it is necessary to solve the IVP for the time evolution
equation of the MZSP

∂v(t)
∂t

= P(t)v(t)

=


−iλ q1(t) q2(t)

−q∗1(t) iλ 0

−q∗2(t) 0 iλ

 v(t) (S5)

with initial condition v(−∞) = φN(t, λ)|t=−∞. Given the as-
sumption that the signal must have a finite and symmetric sup-
port, so that |qj(t)| = 0, j = 1, 2 for t /∈ [−T0, T0], we want to
find the value of v(t) at t = T0 in order to compute the scattering
coefficients a(λ) and b1,2(λ).

To do this, it is first convenient to perform a change of variable
and define the new vector ψ as follow

ψ =


ψ1

ψ2

ψ3

 =


v1eiλt

v2e−iλt

v3e−iλt

 (S6)

The transformed IVP becomes

∂ψ(t)
∂t

= F(t)ψ(t)

=


0 q1(t)e2iλt q2(t)e2iλt

−q1(t)∗e−2iλt 0 0

−q2(t)∗e−2iλt 0 0

ψ(t) (S7)

with initial condition ψ0, the transformed Jost solution reads
ψN(−T0) = (1, 0, 0)T . The scattering coefficients can be com-
puted from the transformed vector as

a(λ) = lim
t→∞

ψN
1 (t) (S8a)

b1(λ) = lim
t→∞

ψN
2 (t) (S8b)

b2(λ) = lim
t→∞

ψN
3 (t). (S8c)

Given that F(t) does not commute with itself for two arbitrary
time instants, it is not possible to express the solution of Eq. (S7)
as a matrix exponential in the form of Eq. (S2). Nonetheless, as
explained before, we can consider the discretized version of F(t),
defined as in Eq. (S4) with T1 = −T0 and T2 = T0

F̃(tn, λ) =


0 q1e2iλtn q2e2iλtn

−q∗1e−2iλtn 0 0

−q∗2e−2iλtn 0 0

 . (S9)

Performing the eigenvalue decomposition and computing the
exponential of this matrix we obtain

Gn = eF(tn ,λ)h (S10)

=


cos(ph) q1e2iλtn sin(ph)

p
q2e2iλtn sin(ph)

p

− q∗1 e−2iλtn sin(ph)
p

|q2|2+|q1|2 cos(ph)
p2

q2q∗1(cos(ph)−1)
p2

− q∗2 e−2iλtn sin(ph)
p

q1q∗2(cos(ph)−1)
p2

|q1|2+|q2|2 cos(ph)
p2


with p =

√
|q1|2 + |q2|2. It should be noted that Gn reduces to

the NLSE case [1] if either q1 or q2 goes to zero. Now, one can
calculate the a(λ) and b1,2(λ) coefficients starting from ψN(−T0)
and using the rule in Eq. (S3) as follows


aN(λ)

b1N(λ)

b2N(λ)

 = G
1
2
NGN−1...G2G1G

1
2
0


1

0

0

 . (S11)

B. Forward-backward method
As stated in [1], the forward-backward method can increase
the numerical precision in the computations of b1,2(λi) for the
complex discrete eigenvalues λi. Indeed, the coefficients b1,2(λi)
are related to the second and third component of ψ which at
every integration step changes proportionally to qe2iλit, as it can
be seen from Eq. (S7). Being the imaginary part of the eigenvalue
strictly positive, when T0 � 1, small errors in the estimation of
λi can lead to big integration errors due to the real part of the
exponential term.

If λi is a discrete eigenvalue, by definition a(λi) = 0, so that
the projection in Eq. (7a) of the main paper reduces to

φN(t, λi) = φP(t, λi)b(λi) (S12)

Since b1,2(λi) are time-invariant they can be computed at any
instant of time by solving the system of equations above. It is
convenient to compute thrm at a time instant where the numeri-
cal error is small, for instance at tm = 0.

To do this we can propagate forward the Jost solution
φN(t, λi) from −T0 to tm, and the Jost solution φP(t, λi) back-
ward from T0 to tm in the following way

w(tm) = LN


1

0

0

 (S13a)

u(tm) = R−1
N


0 0

1 0

0 1

 (S13b)

being RN = G
1
2
NGN−1...Gm+1 and LN = Gm...G2G1G

1
2
0 with

m = bcNc and 0 < c < 1. From Eq. (S12) we obtain simply that
w1(tm)

w2(tm)

w3(tm)

 =


u11(tm) u12(tm)

u21(tm) u22(tm)

u31(tm) u32(tm)


b1

b2

 (S14)

which is a consistent overdetermined system of equations that
can be easily solved.



Supplementary Material 3

Fig. S1. (a) PAPR (dB) of the signal as a function of the relative rotation angle θe between the constellations associated to the two
different eigenvalues and the relative rotation angle θp between the constellations associated to the two different polarizations .
The red point marks the values (θe = π/4, θp = 0) found after the first step of the optimization (PAPR = 10.38 dB). (b) PAPR (dB)
and (c) time-duration (s) of the signal containing 99 % of its power as a function of the radii ri of the constellations associated to the
eigenvalue λi, i = 1, 2. The black point marks the radii used in the first step of the optimization (r1 = 1, r2 = 1), while the red one
marks the optimized values (r1 = 5, r2 = 0.1) used in the experiment (PAPR = 9.49 dB).

2. CONSTELLATIONS SELECTION

In our work the choice of the constellations of the scattering
coefficients b1,2(λi) was driven by the need to make sure that
the time domain signal E(τ, `) has a low peak-to-average power
ratio (PAPR), which is defined as

PAPR = 10 log
(

max (|E1|2 + |E2|2)
P

)
(S15)

where P =
∫ T

0 (|E1|2 + |E2|2)/T is the average power of the
field, T its time duration and the index j = 1, 2 refers to the
two field polarizations. The reason for this is that a signal with
high PAPR has lower signal-to-quantization-noise ratio due to
the limited resolution of the DAC [2] and is more susceptible
to distortion by the devices with a nonlinear characteristic such
as Mach-Zehnder modulators (MZMs) and electrical amplifiers
[3, 4].

a Im[b1(λ2)]

Re[b1(λ2)]

Im[b1(λ1)]

Re[b1(λ1)]

Im[b2(λ2)]

Re[b2(λ2)]

Im[b2(λ1)]

Re[b2(λ1)]

b

c d

θp

θe θe+ θpr1
r1

r2 r2

Fig. S2. Representation of the constellations of the scattering
coefficients b1,2(λi), i = 1, 2 associated with the eigenvalue
λ1 = i0.3 (c,d) and λ2 = i0.6 (a,b) and with the first (a,c)
and second (b,d) polarization of the signal. The optimization
angles θe and θp and radii r1 and r2 are also shown.

The time domain signal shape, bandwidth, duration and
power depend on the particular choice of the eigenvalues and
scattering coefficients (λ1, λ2, b1(λ1), b2(λ1), b1(λ2), b2(λ2)).
These parameters should be jointly optimized in order to min-
imize the PAPR while satisfying system specific design con-
straints. In our case the constraint was to keep the duration
of the signal smaller than the time window of 1 ns to avoid
cropping the signal. However, this optimization would be com-
putationally demanding given the large dimensionality of the
parameters space C6.

In this work we sacrificed some accuracy in order to simplify
the optimization procedure that nonetheless allowed reducing
the PAPR of the signal to a level that enabled to transmit over
several hundreds of kilometers.

Starting from a reference quadrature phase shift keying
(QPSK) constellation Cr = exp

(
i
(
k π

2 + π
4
))

with k = 0, 1, 2, 3
we constructed the set of constellations associated to the scatter-
ing coefficient pairs (b1(λi), b2(λi)), i = 1, 2 corresponding to
the pair of eigenvalues (λ1 = i0.3, λ2 = i0.6) as followC1,1 C1,2

C2,1 C2,2

 =

Crr1 exp(iθe) Crr1 exp(iθe) exp(iθp)

Crr2 Crr2 exp(iθp)


(S16)

where Ci,j is the constellation associated to the eigenvalue i and
polarization j, ri is the radius of the constellations associated to
the eigenvalue λi, θe is the relative rotation angle between the
constellations associated to the two different eigenvalues and θp
is the relative rotation angle between the constellations associ-
ated to the two different polarizations. The four constellation
diagrams are represented in Fig. S2.

The PAPR of the signal was optimized in two steps. First
the two angles (θe, θp) were optimized by sweeping their values
between 0 and π while having r1 = r2 = 1. The optimum value
of PAPR found is 10.38 dB for (θe = π/4, θp = 0), which is lower
by 2.35 dB compared to the worst case where all four constella-
tions are equal (PAPR = 12.73 dB) as shown in Fig. S1 (a). Note
that the optimum value of θe = π/2 found confirms the results
of others previous experimental works in the single polarization
case [5, 6], while the PAPR seems to be independent on θp. To
further reduce the PAPR the two radii (r1, r2) were then opti-
mized. By varying the radii of the constellations associated to
the two eigenvalues it is possible to partially separate the time
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Fig. S3. (a) I and (b) Q components of one symbol of the sig-
nal when all the four constellations are equal to the reference
constellation Cr (PAPR = 12.73). (c) I and (d) Q components
corresponding to the constellations used in the experiment
(PAPR = 9.49). The violet (Polarization 1) and green (Polariza-
tion 2) curves indicates the components associated to the two
polarizations.

domain signal components associated to the two eigenvalues.
This allows reducing the PAPR at the cost of a longer time dura-
tion of the signal as shown in Fig. S1 (b-c). By choosing the set of
radii (r1 = 5, r2 = 0.1) the PAPR results finally in 9.49 dB while
the time duration of the signal containing 99 % of its power is
still within the time window of 1 ns. In Fig. S3 the in-phase (I)
and quadrature (Q) components of one symbol of the time do-
main signal are shown before and after the optimization of the
PAPR.

3. NONLINEAR SPECTRUM NOISE DISTRIBUTION

An analysis of the noise distribution on the eigenvalues and scat-
tering coefficients b1,2(λi) has been done for the transmission
distances of 373.5 km and 332 km performed in the experiment
when spans of 41.5 km and 83 km were used respectively. In
Fig. S4 the histograms of the received eigenvalues (a,f) and scat-
tering coefficients (b-e, g-l) are shown. The variances of the
imaginary part of the received eigenvalues and those of the
phase of the scattering coefficients are reported in Table S1.

It is observed that in both cases the variance of the imaginary
part of the eigenvalue λ2 = i0.6 is about 10% higher than the
one of λ1 = i0.3. The proportionality of the noise variance
on the imaginary part of the eigenvalue is consistent with the
predictions made by the model in [7] for the single eigenvalue
case.

The variance of the phase of the scattering coefficients b1(λ2)
and b2(λ2) associated to λ2 are 2.34 and 2.91 times those of
the scattering coefficients b1(λ1) and b2(λ1) respectively for the
41.5 km case, and 2.27 and 2.50 for the 83 km case.
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