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This document provides supplementary information to “Common pulse retrieval algorithm: a 
fast and universal method to retrieve ultrashort pulses,” https://doi.org/10.1364/OPTICA.6.000495. 
It shows additional results and contains additional information that facilitates the re-
implementation of COPRA, e.g., the expressions for the gradients used in the main paper. 
Additionally, we provide information on the creation of the test pulses and the removal of 
ambiguities to enable the reproduction of our results. 

1. ADDITIONAL PNPS METHODS

In the main paper we showed only a selection of the published
PNPS methods. Additional non-collinear PNPS methods can
be found in Tab. S1. Tab. S2 gives parametrization filters for
additional collinear PNPS methods. More can be found in the
literature, although they are mostly variants of schemes shown
here. In non-comprehensive numerical tests we found that CO-
PRA can be applied to all of them.

2. DISCRETE CALCULATIONS

The discrete calculations are performed by approximating the
integral of the continuous Fourier transform by its Riemann sum.
This leads to

Ẽn = FTk�n(Ek) ≡∑
k

DnkEk with Dnk =
∆t
2π

eiωntk (S1)

Ek = FT−1
n�k(Ẽn) ≡∑

n
D−1

kn Ẽn with D−1
kn = ∆ωe−itkωn . (S2)

Here, the summations are not the usual discrete Fourier trans-
forms (DFT), and Dnk and D−1

kn are not the usual DFT matrices.
Rather, by requiring the reciprocity relation ∆t ∆ω = 2π/N of
the grid spacings the sums can be calculated by using a DFT and

two multiplications with appropriate phase factors that depend
on the simulation grid. We have

Ẽn =
∆t
2π

exp(int0∆ω)∑
k

[
exp(itkω0)Ek

]
exp(inkζ), (S3)

Ek = ∆ω exp(−itkω0)∑
n

[
exp(−int0∆ω)Ẽn

]
exp(−iknζ), (S4)

with ζ = ∆t∆ω = 2π/N. Only the last exponential in the sum
belongs to the DFT and the other phase factors are required to ap-
proximate the continuous Fourier transform on the chosen grid.
For the specific choice of t0 = −bN/2c∆t and ω0 = −bN/2c∆ω
both phase factors can be replaced by circular shifts of the in-
put and output arrays by ±bN/2c. This is what is done by the
functions fftshift and ifftshift that are available in some
programming languages. For any other non-trivial choice of
t0 and ω0 a circular shift by a different amount or the explicit
expression in Eq. (S4) has to be used. Detailed expositions of
this issue can be found in [1, 2].

Using the discrete approximations for the Fourier transform
we can then calculate the discrete PNPS signal from Ẽ. We give
two examples below. In the non-collinear case it fully depends
on the method. For example, for SHG-FROG it is given by

Smk = FT−1
n�k[exp(iτmωn) Ẽn] FT−1

n�k[Ẽn] ≈ Sτm [Ẽ](tk). (S5)
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Table S1. Signal operator for additional non-collinear schemes.

Method Sδ[Ẽ]

SD-FROG F−1[eiτω Ẽ
]2 F−1[Ẽ]∗

THG-FROG F−1[eiτω Ẽ
]2 F−1[Ẽ]

The pulse delay τ is the parameter δ in these methods.

Table S2. Parametrization filter for additional collinear schemes.

Scheme Parameter δ H̃δ(ω)

chirp scan [3] chirp C exp(iC/2 ω2)

bFROG [4] delay τ [1 + exp(iτω)]/2

πFROG [5] delay τ [B(ω + Ω0) + exp(iτω)]/2

In the collinear case we define the discretely evaluated
parametrization filter

H̃mn = H̃δm (ωn). (S6)

With that we can calculate Smk for all collinear methods using
SHG as

Smk = (FT−1
n�k[H̃mn Ẽn])

2. (S7)

This shows that once the calculation of SHG-iFROG is imple-
mented, it can be used to calculate SHG-d-scan traces by simply
exchanging H̃mn.

3. GRADIENTS

COPRA requires the calculation of ∇nZm, which is the gradient
of Zm with respect to Ẽ. As Zm is not holomorphic the expression
∇nZm represents a Wirtinger derivative [6]. It can be calculated
by viewing Ẽ and its complex conjugate Ẽ∗ as independent vari-
ables and evaluating

∇nZm = 2
∂Zm

∂Ẽ∗n
. (S8)

Although the calculation is straightforward we think that pro-
viding the expressions here will make the implementation of the
algorithm and the reproduction of our results easier. We will
provide the calculation of the gradient for SHG-FROG in full
and only state the result in the other cases.

In general ∇nZm takes the following form

∇nZm = 2
∂

∂Ẽ∗n
∑
k

∆Smk ∆S∗mk

= −2 ∑
k

∆S∗mk
∂Smk
∂Ẽ∗n

+ ∆Smk

(
∂Smk
∂Ẽn

)∗
, (S9)

where

∆Smk = S′mk − Smk. (S10)

For methods in which Smk does not explicitly depend on E∗n,
e.g., those based on SHG and THG, the first term in Eq. (S9)
vanishes. In the calculations we use the orthogonality of the
Fourier matrices

∑
k

DmkD−1
kn = δmn. (S11)

Furthermore, we use that the matrices for forward and backward
transformation are related by

D−1
nm =

2π∆ω

∆t
[Dmn]

∗ (S12)

A. Non-collinear Methods
We define the shifted pulse (usually denoted E(tk − τm) in the
FROG literature) as

Amk = FT−1
n�k[exp(iτmωn)Ẽn] (S13)

= ∑
n

D−1
kn exp(iτmωn)Ẽn (S14)

SHG-FROG We have Smk = AmkEk. The derivatives of Smk are

∂Smk
∂Ẽ∗n

= 0 (S15)

∂Smk
∂Ẽn

=
∂

∂Ẽn
AmkEk (S16)

=
∂

∂Ẽn

[
∑

l
D−1

kl exp(iτmωl)Ẽl

] [
∑

j
D−1

kj Ẽj

]
(S17)

= D−1
kn exp(iτmωn)Ek + D−1

kn Amk. (S18)

Plugging this result in Eq. (S9) we obtain

∇nZm = −2 ∑
k

∆Smk
[
D−1

kn exp(iτmωn)Ek + D−1
kn Amk

]∗ (S19)

and using Eq. (S12)

= −4π∆ω

∆t
{

exp(−iτmωn)∑
k

Dnk∆SmkE∗k

+ ∑
k

Dnk∆Smk A∗mk
}

(S20)

= −4π∆ω

∆t
{

exp(−iτmωn)FTk�n[∆Smk E∗k ]

+ FTk�n[∆Smk A∗mk]
}

. (S21)

PG-FROG We have

Smk = |Amk|2Ek. (S22)

which leads to

∇nZm =− 4π∆ω

∆t
{

2 exp(−iτmωn)FTk�n[Amk Re (∆Smk E∗k )]

+ FTk�n[∆Smk |Amk|2]
}

. (S23)

TDP The expressions for time-domain ptychography are very
similar to SHG-FROG, requiring only the replacement of Amk by

Amk = FT−1
n�k[B̃(ωn) exp(iτmωn)Ẽn]. (S24)

B(ω) describes the amplitude transmission of the bandpass filter
in one correlator arm. The gradient is then given by

∇nZm =− 4π∆ω

∆t
{

B̃(ωn) exp(−iτmωn)FTk�n[∆Smk E∗k ]

+ FTk�n[∆Smk A∗mk]
}

. (S25)

B. Collinear methods
We define the pulse in the time domain after application of the
parametrization operator

Cmk = FT−1
n�k[H̃mn Ẽn], (S26)

where H̃mn is the discrete evaluation of the parametrization filter
from Eq. S6.
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SHG For methods based on SHG we have

Smk = (Cmk)
2, (S27)

which leads to

∇nZm = −8π∆ω

∆t
H̃∗mn FTk�n[∆SmkC∗mk]. (S28)

THG For methods based on THG we have

Smk = (Cmk)
3, (S29)

which leads to

∇nZm = −12π∆ω

∆t
H̃∗mn FTk�n[∆Smk(C

∗
mk)

2]. (S30)

SD For collinear methods using inline SD we have

Smk = |Cmk|2 Cmk, (S31)

which leads to

∇nZm = −4π∆ω

∆t
H̃∗mnFTk�n

[
∆S∗mk C2

mk+

2 ∆Smk |Cmk|2
]

. (S32)

C. Global iteration
The expression for the gradient∇mkr used in the global iteration
was obtained using exactly the same method as above. The
global gradient ∇nZ is obtained by simply summing the above
expressions over m

∇nZ = ∑
m
∇nZm. (S33)

D. Implementation
Nowadays, most programming languages offer a data type for
complex numbers which can be used to implement the expres-
sions above straightforwardly. This is what makes the Wirtinger
formalism so attractive. The alternative of giving the expressions
in derivatives of Re[Ẽn] and Im[Ẽn] would make the notation
and implementation more cumbersome.

Because ∆Smk has to be calculated in the algorithm before
∇kZm, the values ∆Smk, Amk, En, Cmk and H̃mn can be reused.
As a result the calculation of the gradient is relatively cheap in
terms of computing time. It requires only one (collinear meth-
ods) or two (non-collinear methods) additional fast Fourier trans-
forms (FFT).

The scaling factors in front of the gradients are inconsequen-
tial and specific to the Fourier transform convention that was
used. We provide them merely for completeness.

4. METHODS

A. Test pulses
We aimed to create test pulses that are localized in time and fre-
quency while having a complex amplitude and phase structure
in both domains. In this way they serve as a good benchmark
on how algorithms pick up spectral and temporal amplitude
features. One example is shown in Fig. S1.

The pulses were generated from complex, random noise. This
is comparable to the first test set described in [7]. In doing so we
did not model our test pulses after realistic measurements but
rather tried to benchmark the worst-case scenario for a pulse
retrieval algorithm. Other strategies to construct test pulses,

Fig. S1. An example for one of the test pulses with TBP 2. In the bottom
row we show the logarithmic scaling to demonstrate the time-frequency
localization.

e.g., a Gaussian spectrum with random spectral phase coeffi-
cients, should generally lead to higher retrieval ratios and faster
convergence.

We found the time-frequency localization to be especially
important. If the pulse extends to the edges of the simulation
grid in any domain, wrap-around will occur in the computation
of the trace and the result will usually be unphysical. This
problem is made worse when computing d-scan and MIIPS
traces as there the pulse is spectrally chirped and, consequently,
stretched in the time domain. Curiously, this can improve the
conditioning of the retrieval problem and can lead to faster
convergence of COPRA – however, the resulting solution is
unphysical (see Sec. 7).

To avoid any issues like that we created pulses that dropped
off to a relative amplitude of 1e−15 at the edges of the simulation
grid in both domains. Additionally, we had to leave enough
padding in the time domain so that even the strongly chirped
pulses in d-scan could be calculated without wrap-around. This
very strict requirement explains why we chose a comparably
low TBP of 2 for our simulations. For higher TBPs we would
have needed much larger grid sizes, e.g., N = 1024 for a TBP of
5. This would have made the simulation of the retrieval of a very
large number of pulses infeasible at some point – even when
using COPRA. By limiting the TBP we can make sure that the
computed traces do not suffer from numerical artifacts and the
reported retrieval probabilities are meaningful for the retrieval
from experimental traces. An example for retrieval of a pulse
with very high TBP is shown in Sec. 8.

The procedure to create the test pulses requires a target TBP
and a simulation grid. First, a random array is created in the
frequency domain (amplitude uniformly distributed on [0, 1],
phase uniformly distributed on [0, 2π]). This array is multiplied
by a Gaussian function that just reaches the required edge val-
ues at ω0 and ωN−1. Then the Fourier transform is calculated
and the result is multiplied by a Gaussian function in the time
domain. The end result is the test pulse in the time domain.

The width of the second, temporal Gaussian function is
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roughly determined by the Fourier transform of the spectral
one. However, its exact width has to be optimized to result in
the specified TBP exactly. This is done with a scalar minimiza-
tion algorithm.

B. General minimization algorithms

As a complementary approach to COPRA we suggested using
general minimization algorithms. This was illustrated with a
retrieval comparison from a simple FROG measurement using
different minimization algorithms.

Specifically, we used the implementations from the SciPy
package for Python in its version 1.1.0 [8]. The NM and BFGS
algorithms were run from the scalar minimization wrapper
minimize with default arguments. We used the DE implementa-
tion in the function differential_evolution and the parame-
ters described in [9]. We used the sophisticated LM implementa-
tion that is provided as the default solver of the least_squares
function with its default arguments. We found that other im-
plementations of LM may show slightly worse convergence
speed (e.g., the one in MINPACK).

The LM algorithm can be provided with an implementation
of the Jacobian of Tmn for more accurate and efficient retrieval.
The required expressions can be obtained using the methods
from Sec. 3. However, we found that in this case there is no great
advantage in doing so. The calculation of the full Jacobian is
computationally expensive and the numerical finite-differences
approximations worked very well for us.

On the other hand, the gradient of r required for BFGS can
be calculated efficiently – either by symbolic or automatic dif-
ferentiation. The resulting speed-up makes BFGS an attractive
alternative to LM if the extra effort of implementing the gradient
is invested. This approach was not investigated in this work.

C. COPRA retrieval tests

The parameters we used for our pulse retrieval simulations for
the different methods are listed in Tab. S3. The parameters
were chosen after careful consideration of several factors. For
SHG-FROG we wanted to do a direct comparison to PCGPA
which requires the delay sampling τm = tm. The same was
also chosen for PG-FROG, SHG-iFROG and THG-iFROG. For
SD-iFROG we found that higher delay sampling is necessary
for reliable convergence. For SHG-TDP we used only M = 128
delay samples.

For d-scan the maximum glass insertion and the pre-chirp
were adapted to the TBP of the pulse, because retrieval worked
best when the largest induced GVD was on the order of the
pulse chirp. The pre-chirp was simulated by using negative
insertion distances. This leads to a slight difference from a true
d-scan measurement where pre-chirping is usually done in a
grating compressor. However, we found this difference to be
inconsequential from the perspective of the retrieval algorithm.
For MIIPS we also adapted the parameters α and γ to match the
spectral chirp of the pulse.

In general, the parameters we selected are biased in the sense
that retrieval for all methods should be possible within the it-
eration count chosen for the simulation. It is certainly possible
to choose parameters that are harder to retrieve. For example,
for SD-iFROG for τm = tm over 1000 iterations would have been
necessary to reach comparable trace errors. However, these cases
touch the question of which minimal information is necessary
for pulse retrieval – something that we did not look at in this
work.

Table S3. Parameters for our retrieval simulations.

Methods Parameters

all N = 256
∆t = 5 fs
∆ω = 2π/(N∆t) ≈ 4.9 THz
λ0 = 800 nm

PG-FROG
SHG-FROG
SHG-iFROG
THG-iFROG

τm = tm
M = N

SD-iFROG τm = t0 + m∆τ
∆τ = (tN−1 − t0)/M
M = 4N

SHG-TDP τm = t0 + m∆τ
∆τ = (tN−1 − t0)/M
M = 128
filter center 790 nm
filter width 10.6 nm (FWHM)

SHG-d-scan
THG-d-scan
SD-d-scan

zm = (m−M/2 + 0.5)∆z
∆z = 25.0 mm/M
M = 128
glass: BK7

SHG-MIIPS
THG-MIIPS
SD-MIIPS

δ = m∆δ
∆δ = 2π/M
M = 128
γ = 22.5 fs
α = 1.5π

While we tried to use parameters that are similar to the exper-
iment this was clearly not possible for all PNPS schemes. Our
actual values for bandwidth and center wavelength were taken
from pulses in our lab and do not correspond to single-cycle
pulses. Thus, e.g., the required glass insertion for d-scan is far
higher than what has been used in an experiment (and proba-
bly also higher than what is feasible). But we stress again that
the retrieval is agnostic to these specific numbers as the whole
trace and the simulation can be scaled and shifted to different
frequencies. Our results should be directly transferrable to the
retrieval of single-cycle pulse measurements.

D. Ambiguity removal
After retrieval from synthetic PNPS traces we want to compare
the retrieved pulse to the original that was used to create the
trace. We used the procedure described in [10] with an additional
scaling of the field and a different normalization. The former
was necessary as the introduction of the scaling factor µ in our
objective function made the absolute scale of the retrieved pulse
ambiguous. The latter was chosen to match the convention
of the trace error, which was supposed to coincide with the
well-known FROG error G. Below we describe our numerical
procedure in full.

In the following we will adopt a notation in which arrays
are denoted by bold font (e.g., Ẽ) and all operations are defined
element-wise (e.g., ρẼ and also ẼẼ0). We assume that all arrays
have N elements and define ω = (ω0, . . . , ωN−1). This notation
is imprecise but it should allow an easy implementation in mod-
ern programming languages. We start by defining the NRMSE
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as a function of two arrays

δ(x, y) =
[N−1

∑
n=0
|xn − yn|2/(N max

n
|yn|2)

]1/2. (S34)

The retrieval error ε can then be defined as

ε(Ẽ) ≡ min
ρ,ϕ0,ϕ1

δ{ρ exp[i(ϕ0 + ϕ1ω)]Ẽ, Ẽ0}. (S35)

To calculate it we need two analytical results. First the error

δ(ρ|Ẽ|, |Ẽ0|) (S36)

is minimized by

ρ(Ẽ, Ẽ0) =
(
∑
n
|Ẽn| |Ẽ0

n|
)
/
(
∑
n
|Ẽn|2

)
. (S37)

This calculates the best scaling to match the amplitudes of two
complex-valued arrays in the least-squares sense. It can be ob-
tained by straightforward differentiation. Additionally, the error

δ(c0Ẽ, Ẽ0) with |c0| = 1, c0 = exp(iϕ0) (S38)

is minimized by

c′0(Ẽ, Ẽ0) =
(
∑
n

Ẽ0
n Ẽ∗n

)
/
∣∣∑

n
Ẽ0

n Ẽ∗n
∣∣, (S39)

c0(Ẽ, Ẽ0) =

{
c′0(Ẽ, Ẽ0) δ(c0Ẽ, Ẽ0) < δ(−c0Ẽ, Ẽ0)

−c′0(Ẽ, Ẽ0) else
(S40)

This calculates the optimal constant phase to match two complex-
valued arrays in the least-squares sense. Using these results
we can proceed to calculate ε. First Ẽ is scaled to match the
amplitude of Ẽ0:

Ẽ→ ρ(Ẽ, Ẽ0)Ẽ. (S41)

Then we define the objective function

O(ϕ1) = δ{c0(Ẽ′, Ẽ0) Ẽ′, Ẽ0} (S42)

with

Ẽ′ ≡ Ẽ′(ϕ1) = exp(iϕ1ω)Ẽ. (S43)

This calculates the minimal retrieval error ε for a given linear
spectral phase ϕ1. It remains to determine the optimal ϕ1. For
that we sample O(ϕ1) using 2N regularly spaced points between
−π/∆ω and π/∆ω to obtain a bracket that encloses the global
minimum. The exact location of the minimum is found by a
bisection method. The final retrieval error is O at the optimal ϕ1.
The direction-of-time ambiguity is taken into account by trying
out both variants and selecting the one with the lower retrieval
error, i.e., ε = min[ε(Ẽ), ε(Ẽ∗)].

5. COMMON PULSE RETRIEVAL ALGORITHM

In this section we want to discuss various aspects of COPRA
in more detail. This includes design decisions and possible
modifications.

Fig. S2. Convergence behavior for a noisy SHG-FROG trace using the
global iteration of COPRA and a modified version using a backtracking
line search. (a) the running minimum of the trace error (b) the actual
trace error over the iteration count.

Trace error One aspect that was silently disregarded in the
main paper is that the trace error R cannot be calculated during
the local iteration without extra effort. As Ẽ is changed after
processing every spectrum, Smn is calculated based on a different
Ẽ for every m. Still, we recommend calculating an approximation
to R by using the Smn from the local iteration. As the changes
in Ẽ between the iterations become smaller it will get closer
to the real R. We observed that it works very well to use this
approximation to terminate the local iteration and to select the
best solution. All results from the main paper were obtained in
this way.

However, one has to be very careful when reporting the error
R during or after the local iteration of COPRA. The approxima-
tion will regularly underestimate R. Similarly, one has to take
care to calculate the correct final trace. It cannot be based on
the Smn obtained during the local iteration. Rather, it has to be
calculated in full for the retrieved pulse Ẽ. In this work, we
went to the extra effort and calculated the correct R in every
local iteration for logging purposes (this data is shown in the
convergence graphs).

We remark that these problems also exist in ptychographical
algorithms.

Convergence behavior The convergence graphs in the main pa-
per explicitly show the running minimum of the trace error R.
Ignoring that, one may get the wrong impression that COPRA
reduces the trace error in every iteration. This is not the case.
Rather the trace error can fluctuate strongly between iterations.
Still, the minimal trace error R will converge. An example of the
actual behavior of the trace error in dependence of the iteration
count is shown in Fig. S2 b).

Projection The projection on the measured intensities is de-
noted in the following way in the main paper:

S′mk = µ−1/2 FT−1
n�k

(
S̃mn/|S̃mn|

√
Tmeas

mn

)
. (S44)

Here, the complex-valued square root has to be calculated, effec-
tively mapping negative intensities to imaginary values. Such
negative values appear naturally when measuring with CCD
spectrometers and subtracting the dark count. It was already
observed in the literature that this way of handling them is
necessary for an unbiased projection, e.g., in [11].

Spectra iteration order We recommended to iterate randomly
over the spectra in the local iteration stage without commenting
on the effects. We found that it generally has a positive effect on
the retrieval ratio. However, depending on the PNPS scheme
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other iteration orders can be more beneficial, e.g., iterating the
spectra from highest to lowest intensity. However, the effect is
small and any iteration order should lead to comparable results.

Step sizes The speed of COPRA benefits from not requiring
a line search in every iteration. Rather, we give heuristically
safe step sizes γ, ηz, and ηr that show good convergence in our
tests. Our step sizes are all based on one specific choice, namely
the function value divided by the L2-norm of its gradient. For
example, in the global iteration we have

Ẽ′n = Ẽn − α
(
Z/ ∑

k
|∇kZ|2

)
∇nZ. (S45)

We motivated this step size by performing a Taylor expansion.
For example, we expand Z(Ẽ′) in Ẽ using η as the step size [6]:

Z(Ẽ′) ≈ Z(Ẽ) + 2Re
[
∑
n
(Ẽ′n − Ẽn)

∗ ∇nZ
]

(S46)

Z(Ẽ′) ≈ Z(Ẽ) + 2Re
[
∑
n
−η(∇nZ)∗ ∇nZ

]
(S47)

⇒ η ≈
(
Z(Ẽ)− Z(Ẽ′)

)
/
(
2 ∑

n
|∇nZ|2

)
. (S48)

Now we assume that every iteration substantially decreases Z,
i.e., Z(Ẽ′)� Z(Ẽ) to obtain

η ≈ Z(Ẽ)/
(
∑
n
|∇nZ|2

)
, (S49)

which is the choice we used in COPRA, up to a constant scale.
Though we have not found any explicit discussion of this choice
in the literature, it is similar to what is recommended as the
starting value for a line search in some algorithms [12].

For application in COPRA we scale this η by a factor α. In the
local iteration we use α = 1 (and name it γ to allow subscripts),
in the global iteration by α = 1/4 (to obtain ηz and ηr). We
found that for many PNPS methods α can be safely increased
for the local iteration. This increases the convergence speed but
may lead to divergence in some cases. For the global iteration α
can be decreased to obtain a more accurate solution. However,
this obviously slows down the convergence.

We tested more sophisticated approaches where ν is de-
creased over the iteration count, e.g, α ∝ (1.0− iter./max. iter.).
Sometimes this leads to faster and more accurate convergence,
but we did not find a generally applicable strategy.

We also compared our step sizes to those obtained by an in-
exact line search. Specifically, we modified the global iteration
to use a backtracking line search that fulfills the Armijo condi-
tion (see [12] p. 37) with c = 1e−4 and ρ = 0.75. It was used for
both the minimization of r and Z. Then we ran only the global
iteration of COPRA on a noisy SHG-FROG trace. The results are
shown in Fig. S2. We see that the line search initially converges
faster – in terms of iteration count, not function evaluations –
but then stagnates above the accuracy reached by the original
COPRA. However, in Fig. S2 b) we see that the trace error in
COPRA fluctuates more strongly. An exact line search could
provide additional accuracy but we conclude that the COPRA
step sizes are generally an almost optimal choice for the global
iteration.

For the local iteration we observed the same, almost opti-
mal behavior only in the noiseless case. When noise is present
adapting the stepsize to the local gradient norm results in poor
convergence and even leads to divergence. The modification
we provided, the usage of the maximum gradient norm in the
denominator instead of the local gradient norm, is purely heuris-
tic. We cannot provide any more insight except than that we
observed it to work very well.

Ambiguities in pulse retrieval It seems that even though the
pulse retrieval problem is ill-posed due to its many ambiguities
solving it does not require to remove the ambiguities in retrieval.
We observed no clear indication of stagnation or a cyclic behav-
ior due to ambiguous solutions like it happens in classical phase
retrieval. In practice, COPRA will simply converge randomly to
one of the many ambiguous solutions. On the other hand, our
attempts to remove the ambiguities, e.g., by fitting the second
derivative of the phase, showed no improvement.

In fact, COPRA even seems to profit slightly when the am-
biguities are used to effectively widen the search range. After
every iteration we can update the current guess by

Ẽ′n = exp[i(ϕ0 + ϕ1ωn)]Ẽn, (S50)

where ϕ0 and ϕ1 are randomly chosen. We found that this can
slightly increase the retrieval probability – but the increase was
not significant enough to be included in the default algorithm.

This effect was used when we introduced an additional ambi-
guity to the algorithm by the scale factor µ in the expression for
r. It leads to an effective ambiguity in the scale of Ẽ. Originally,
it should only serve to assure convergence even when an initial
guess with the wrong magnitude was provided (by determining
µ once in the first iteration). But we observed that convergence
is more reliable when it is updated in every iteration.

Momentum The convergence speed of COPRA can be increased
further by calculating an exponentially-decaying sum of the past
gradients and using that as the descent step. This is usually
likened to a momentum of the iteration and is well-known to
increase the learning rate in neural networks [13]. This approach
is also used in the extended ptychographical iterative engine [14].
However, as COPRA often converges within 100 iterations we
found this additional increase in speed not worth the effort.
Thus, it was excluded from the version presented in the paper for
brevity. Still, it may be useful for very large retrieval problems
where a single iteration is already computationally expensive.

Weighted least-squares In the main paper we studied the in-
fluence of constant additive Gaussian measurement noise on
the pulse retrieval. This case is commonly assumed in pulse
retrieval simulations [5, 15] and corresponds to low intensity
measurements with CCD array spectrometers as they are often
used for PNPS measurements [16]. In other situations the signal-
dependent part of the noise in a measurement will dominate.

COPRA can be modified to solve the weighted least-squares
problem to deal with this case. It requires knowledge of the stan-
dard deviation σmn of the Gaussian noise of the measurement
Tmn, e.g., from repeated measurements. In this case a maximum-
likelihood estimate can be obtained by solving the weighted
least-squares problem:

r = ∑
m,n

[
T̃meas

mn − µT̃mn(Ẽ)
]2 /σ2

mn. (S51)

Making COPRA work with this modified r requires two small
changes. First, the expression for µ has to be modified to

µ =

[
∑
mn

(T̃meas
mn T̃mn)/σ2

mn

]
/

[
∑
mn

T̃2
mn/σ2

mn

]
. (S52)

Second, in the global iteration the expression for the gradient of
r has to be adapted to include the weighting

∇mkr = −4µ
∆t

2π∆ω
FT−1

n�k

[(
T̃meas

mn − µT̃mn
)
S̃mn/σ2

mn

]
. (S53)
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After these modifications COPRA will solve the weighted least-
squares problem.

Analyzing the retrieval in presence of more complicated noise
models, e.g., the combination of additive and multiplicative
noise or if the σmn are not known, is out of the scope of this work.
We can only say that if the σmn are known or approximated
well enough the solution obtained by COPRA will again be
a maximum-likelihood estimate – and more accurate than the
results obtained by other algorithms. We also point out that the
impact of moderate levels of multiplicative Gaussian noise on
PCGPA or PIE is much smaller than that of additive Gaussian
noise. Consequently, the advantage of using COPRA in these
situations is not as large.

Noncalibrated traces For single-cycle pulses the non-uniform
spectral response of the measurement setup will usually severely
impact the measurement. One approach to handle this problem
is to retrieve the spectral response function simultaneously to the
pulse. This was demonstrated for d-scan measurements and, in
fact, exactly the same approach can be used in COPRA [11]. The
scaling factor µ in Eq. (13) has to be replaced with a frequency-
dependent scaling µ(ω) that is calculated by

µ(ωn) = ∑
m

[
T̃meas

mn T̃mn(Ẽ)
]

/ ∑
m

T̃mn(Ẽ)2.

All steps of COPRA stay the same with the exception of using
µ(ω) instead of µ.

6. PULSE RETRIEVAL ALGORITHMS

Here we describe other fast pulse retrieval algorithms, some
of which were compared against COPRA. It mainly serves to
provide information on how we implemented them and to dis-
cuss their properties. Furthermore, we present them using the
notation of the PNPS formalism.

All the algorithms in this section work by projecting on the
measured intensity T̃meas, i.e., S′mk is obtained by Eq. (S44) either
for all m in parallel or subsequently for one m at a time. The scale
factor µ was included by us as we found it improves convergence
for all these algorithms. Its calculation is described in the main
paper. For the treatment of negative intensities we refer to the
discussion in Sec. 5.

A. Generalized projections algorithm

The generalized projections algorithm (GPA) for FROG [17] can
be applied to all FROG variants. We will shortly sketch the SHG
version here.

Every GPA iteration starts with calculating Smk from the cur-
rent solution E in the time domain. Then a better guess for the
PNPS signal S′mk is obtained by projecting on the measurement
via Eq. (S44) (data constraint). In the next step E is updated by
minimizing

Z = ∑
mk
|S′mk − Smk|2 (S54)

in terms of E by a gradient descent step

E′j = Ej − γ∇t
jZ. mathematical-form constraint (S55)

Until now no assumption has been made about the delays τm or
their sampling frequency ∆τ. An in fact, none is required. The

general expression for ∇t
jZ can be calculated with the methods

described in Sec. 3 and is given by

∇t
jZ = ∑

m
2

∂Zm

∂E∗j
(S56)

= −2 ∑
m

{
∆Smj A∗mj+

∑
k

∆Smk
[
Ek ∑

n
D−1

kn Dnj exp(iτmωn)
]∗}, (S57)

with the definitions from Sec. 3. We see that this general gradient
expression is complicated and direct evaluation in this form
would require a multiplication with a dense N × N matrix in
the second term. To avoid this issue the gradient in COPRA is
calculated with respect to Ẽ. In GPA the solution is to require
τm = tm, which is sometimes understood as a fundamental
requirement for FROG measurements. With this specific choice
of delays we can simplify the gradient to obtain

∇t
jZ = −2 ∑

m
∆Smj A∗mj + ∆Smj′E∗j′ (S58)

with j′ ≡ j′(k, l = τm/∆t) =

{
j + l j + l < N
j + l − N j + l ≥ N

,

where the second term is circularly shifted by −τm/∆t. Further-
more, Amj can be expressed as a circular shift of Ek by τm/∆t:

Amj = Ej′ (S59)

with j′ ≡ j′(k, l = τm/∆t) =

{
j− l j ≥ l
N + j− l j < l

.

Using this and assuming a periodic continuation of the involved
fields we can express the gradient as

∇t
jZ = −2 ∑

m
S′(tj, τm)E∗(tj − τm)− E(tj)|E(tj − τm)|2+

S′(tj + τm, τm)E∗(tj + τm)− E(tj)|E(tj + τm)|2, (S60)

which is a notation more common in the FROG literature (com-
pare [18], pp. 172–173). The step size γ in classical GPA is de-
termined by an exact line search. We note that a more efficient
version of GPA can be implemented by using similar step sizes
as the ones in COPRA, described in Sec. 5. We did not include
GPA in our comparison as we found the algorithm described in
the next section to provide the same solutions in terms of trace
and pulse error - but after far fewer iterations.

B. Principal components GPA
The principal components generalized projections algo-
rithm (PCGPA) [7] is inspired by GPA and also requires the spe-
cific delay sampling τm = tm. After obtaining S′mk by Eq. (S44)
it uses the algebraic structure of the FROG trace to update E.
Specifically, we can obtain the so-called outer product form from
Smk by reversing and performing a circular shift by k for every
kth column:

Smk → Ŝmk under m→
{

k−m k ≥ m
N + k−m k < m

(S61)

which is

Ŝmk = EmEk. (S62)

This is a direct result from Eq. (S59). For the corrected PNPS
signal S′mk this outer product form will not exactly match to a
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field E, however, it can be decomposed in a least-squares sense
by a singular value decomposition (SVD). As this approach
scales badly with the size of the trace, PCGPA commonly uses a
single iteration of the power method to obtain an estimate for the
eigenvector associated with the largest eigenvalue. Specifically,
this means to perform the following steps to update E

Ek →∑
k
(Ŝ′mk)

∗Ek (S63)

Ek → E∗k /
(
∑

l
|El |2

)1/2. (S64)

PCGPA can be modified to work with other FROG variants in
which case the formulas above would have to be adapted. We
found that using a full SVD gives more accuracy and slightly
improved retrieval probability. So for small grid sizes it may be
the preferable strategy.

C. Ptychographic iterative engine
Recently, several pulse retrieval algorithms based on ptychogra-
phy have been proposed [15, 19–21]. All of them are based on
the ptychographic iterative engine (PIE) [14, 22], which we chose
as a common name for these slightly different algorithms. Specif-
ically, in our comparisons we used the version for SHG-FROG
from [15, 21] which we describe in the following.

In PIE for SHG-FROG the spectra are processed individually
and in random order. For every m the PNPS signal Smk is calcu-
lated from the current guess Ẽ, followed by a projection on the
measured data to obtain S′mk. Then an updated guess for E is
obtained by

E′k = Ek + β
(

A∗mk/‖E‖2
max
)
∆Smk, (S65)

where β ∈ [0.1, 0.5]. Comparing this expression to Eq. (S57) we
see that it is, in fact, a gradient descent step using only the first
term of the GPA gradient with the specific step size

γ = β/‖E‖2
max. (S66)

The relation of the update step in ptychography to gradient
descent has been discussed in [14]. There this specific step size
is identified as the Lipschitz constant of the gradient.

The fundamental reason why only one part of the GPA gra-
dient is used, is that in ptychography probe and object pulses,
i.e., the delayed and undelayed pulses, are seen as independent
variables. Now in PIE for XFROG and TDP both pulses are
updated separately using the gradient step from above, which
effectively means using both terms of the full gradient. This is
very similar to GPA for blind FROG [18].

However, in PIE for SHG-FROG only a single gradient step
is performed. For the specific choice τm = tm this has almost
no impact as then both parts of the GPA gradient are approx-
imately the same under the transformation τm → −τm. This
can be seen best from Eq. (S60). Therefore, if τm and −τm are
processed subsequently the algorithm still picks up the full gra-
dient approximately. However, when the delay sampling is not
symmetrical, e.g., τm = tm + ∆t/2 or even τ > 0, we found that
the retrieval probability is reduced significantly.

The discussion here should make it clear that from a numeri-
cal perspective there is no large conceptual difference between
GPA and PIE. The only major distinction is that PIE processes
the spectra individually and provides a specific step size for the
gradient. In general, the results obtained by both algorithms are
also comparable – something that was confirmed in our work.

Fig. S3. The retrieval ratio (blue bar) and median retrieval error (inset
number) of COPRA in dependence of the PNPS method and the noise
level when starting with a random initial guess. A comparison with PCGPA
and PIE for SHG-FROG is included. Successful retrieval was assumed if
R < R0 + 1e−4.

The slightly improved retrieval accuracy of PIE compared to
GPA in some cases [21] stems from the individual processing of
the spectra and, specifically, the order in which they are iterated.
While in GPA all spectra contribute equally, in PIE the spectra
that are processed last effectively influence the solution more
strongly. So depending on the processing order the retrieval
accuracy can be slightly better or slightly worse.

D. GPA for d-scan
Recently, a fast retrieval algorithm for d-scan based on GPA has
been proposed [11]. It proceeds by projecting on the measured
intensity and then updates Ẽ by a heuristic procedure:

S′mk → S′mk
(
FT−1

n�k[H̃mn Ẽn]
)∗ (S67)

S′mk → S′mk/|S′mk|
2/3 (S68)

Ẽn →∑
m

H̃∗mnFTk�n[S
′
mk] (S69)

We found that when using it for simultaneous amplitude and
phase retrieval this algorithm does not converge by the definition
used in this work. For noiseless SHG-d-scan traces we found it
never obtains R < 5e−3 or ε < 1%. If seeded with the original
test pulse it quickly diverges from the numerical limit of R ≈
1e−15 and settles at R ≈ 5e−3. This means that the solution of
the pulse retrieval problem is not a fixed point of the algorithm.
For these reasons it was not included in a comparison.

7. RANDOM INITIAL GUESS

As described in the main paper we performed a second retrieval
simulation in which COPRA was initialized with a random
guess (random amplitude and phase, uniformly distributed on
[0, 1] and [0, 2π]). Additionally, for d-scan and MIIPS the it-
eration count had to be increased from 300 to 1000 to obtain
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Fig. S4. An example of the conditioning problems in SD-d-scan. Even
though the pulse in a) has a lower trace error R than the one in b), it
contains spurious satellite pulses and has a much higher retrieval error ε.
The black line indicates the amplitude of the original test pulse.

comparable retrieval errors. The retrieval ratios and the me-
dian retrieval error are shown in Fig. S3. We see that for many
PNPS schemes COPRA performs almost equally well as with the
Gaussian initial guess. Specifically, for the non-collinear meth-
ods (FROG and TDP) there is no difference at all and for iFROG
we only see minor differences in retrieval ratio and retrieval
accuracy. This demonstrates that COPRA often works without
any knowledge about the measured pulse.

For the d-scan and MIIPS we observe a different behavior.
First of all, the retrieval ratio is lower, especially for MIIPS. The
reason are local minima of the pulse retrieval problem to which
the algorithm converges. Particularly many exist for MIIPS as
the applied phase patterns are periodic, admitting local solutions
that are spectrally shifted with respect to the global solution.
Consequently, they do not appear when starting with a Gaussian
pulse that is localized in time and frequency as they do not
overlap much with this initial guess.

Secondly, the retrieval accuracy for MIIPS and d-scan is lower
than when starting from Gaussian initial guesses. Strikingly, this
can be seen for SD-d-scan and SD-MIIPS where even in the
noiseless case a high retrieval error remains. The reason is that
the retrieval problem is ill-conditioned. Fields at large delays
compared to the main pulse, i.e., satellite pulses, contribute only
weakly to the PNPS trace for these schemes (see Fig. S4). The
solutions obtained in this case have a small oscillating artifact
in the frequency domain. They do not constitute non-trivial
ambiguities in a strict sense as for noiseless measurements the
correct solution can still be found when further reducing the
trace error. However, COPRA stagnates when converging to-
wards it. Curiously, this is not the case if the temporal grid is
chosen too small and unphysical wrap-around happens in the
calculation of the PNPS trace (see Sec. 4.A).

One way to avoid this convergence behavior is to regularize
the problem by, e.g., incorporating knowledge about the pulse.
This was done implicitly in the main paper by starting from
a Gaussian pulse in the time domain which does not contain

the problematic contributions at large times. In any other case
we found it is sufficient to simply set the first and last 10% of
the pulse field to zero after every iteration of COPRA. When
testing for non-trivial ambiguities we excluded these artifacts
by calculating a modified retrieval error ε′ that takes only the
central part of the pulse field Ẽ into account.

8. LARGE TIME-BANDWIDTH PRODUCTS

Although not explicitly shown in the main paper, COPRA can, in
principle, deal with measurements of pulses of arbitrary TBPs. In
fact, in non-comprehensive numerical tests we found no signifi-
cant dependence of convergence speed and retrieval probability
on the TBP. One example for retrieval of a very complex pulse
with TBP 25 (N = 16384) from a synthetic d-scan trace (M = 512)
is shown in Fig. S5. The retrieval with 150 iterations required
roughly 5 min on an average notebook. Retrieval from measure-
ments this large would probably be practically infeasible with
state-of-the-art d-scan retrieval algorithms.
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