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1. MATHEMATICAL DERIVATION OF CAPTURING IM-
AGES WITH PUPIL PLANE MODULATION

We consider a point on the unknown sample, s(x, y), and how
it propagates to the camera plane to be imaged. On the sample
plane, a point source at (x0, y0) may have an amplitude and
phase C, and it can be described by:

U0(x, y; x0, y0) = Cδ(x− x0, y− y0) (S1)

We then use Fresnel propagation:
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and apply the phase delay associated with an idealized thin
lens [1] having an estimated focal length f0 for the unknown

lens, exp
[
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, and any discrepancy from the ideal

is incorporated into the pupil function, P(u, v; x0, y0) = Pt(u, v),
where t = 0 is the isoplanatic patch around (x0, y0):

U2(u, v; x0, y0)

=
C

jλ f0
exp

[
j

π

λ f0
(x2

0 + y2
0)

]
exp

[
−j

2π

λ f0
(x0u + y0v)

]
Pt(u, v)

= C2(x0, y0)Pt(u, v) exp
[
−j

2π

λ f0
(x0u + y0v)

]
(S3)

where we set C2(x0, y0) = C/(jλ f0) exp
[
jπ/(λ f0)(x2
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0)
]
.

Eq. (S3) is Eq. (2) of the main article.
U2(u, v; x0, y0) is relayed to the pupil plane in Fig. 1 without

any additional phase term by the 4f system formed by L1 and L2
[1]. The relayed field may be magnified by the factor f2/ f1, but
here we assume no magnification. We apply a mask, M(u, v), to
the field:

U′2(u, v; x0, y0)
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and propagate it by distance d using angular spectrum to the
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surface of L3:
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where (s, t) are the coordinates on the L3’s plane. We then apply

the phase delay associated with L3, exp
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, and

propagate the field by f3 to the camera plane:
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Set C4(ξ
′, η′) = exp
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where ∗ is the convolution operator.
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This is the complex field incident on the camera from the
point source located at (x0, y0). It is the PSF of the system, and
we observe that it simply shifts laterally for different (x, y) co-
ordinates. Therefore, the image on the camera sensor can be

Fig. S1. The influence of the limited masks’ overlap ratio on
the pupil function recovery. The recovery becomes poor below
30% overlap.

calculated by a convolution between U′4(ξ
′, η′; x0, y0) and the

sample field within the isoplanatic patch, st(x, y). However, the
phase term in C5(ξ

′, η′; x0, y0) can have a significant impact on
the captured images. In our incoherent imaging scenario, the
phase relationship between the points on the sample plane dur-
ing the capturing process is irrelevant. So, we can define an in-
tensity PSF, ht(ξ, η) = |F {M(u, v)Pt(u, v)} (ξ, η)|2, to describe
the intensity of the U′4(ξ
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The complicated phase fluctuations embedded in
C5(ξ

′, η′; x0, y0) become no longer relevant. Dropping
the constants and neglecting coordinate scaling, the image
of the unknown sample captured by the camera becomes a
convolution of ht(ξ, η) with the sample distribution, st, as
described by Eq. (5) of the main article.

2. LIMITED APERTURE OVERLAP REQUIREMENT FOR
PUPIL FUNCTION RECONSTRUCTION

Given the ground truth pupil function 5 mm in diameter and
the limited mask diameter of 1 mm, the area overlap between
contiguous masks are varied from 10% to 60% in simulation. In
spatial domain, all images are captured satisfying the Nyquist
criterion. The simulation is identical to Fig. 6’s data acquisition
and reconstruction using Algorithm 1 and 2. As shown in Fig.
S1, the recovery becomes poor below 30% overlap as observed
by disconnected fringe patterns, and eventually contains holes
in regions where there was no masks’ coverage.

3. INCREASING SNR BY AVERAGING OVER MULTIPLE
FRAMES

In processing the data from the in-vivo experiment, motion-
reference camera images are first registered for rotation and
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Fig. S2. Motion-reference camera images registered for rota-
tion and translation (see Visualization 1).

Fig. S3. Raw full aperture image. a) 1 frame and b) a sum of
213 frames.

translation, as shown in Fig. S2 and Visualization 1, and these
registration values are taken into account when summing multi-
ple frames captured with the same SLM aperture pattern.

An example of a single frame of full aperture image is shown
in Fig. S3, and the same aperture image after summing 213
frames.

Due to the photon-starved imaging condition, it is imperative
to account for the detector noise in the captured images. We
use two-point radiometric calibration to account for the fixed
pattern noise and inhomogeneous sensitivity of our imaging
sensor [2]:

I′(ξ, η) =
I(ξ, η)− B(ξ, η)

R(ξ, η)− B(ξ, η)
(S10)

where (ξ, η) are the coordinates on the camera sensor’s plane,
I′(ξ, η) is the desired calibrated image, I(ξ, η) is the input image,
B(ξ, η) is the dark image captured with the sensor blocked from
light, and R(ξ, η) is a reference image captured with the sensor
capturing an image of an opal diffuser.
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