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1. FOV characterization of 3D biplane sSMLM systemThe usable field-of-view (FOV) is generally determined by the selection of the objective lens and the field of illumination. For sSMLM system, the FOV is further constrained by the diffraction angle (typically < 10 degrees) of the grating to avoid overlapping of the zeroth and the first order images. However, in the case of 3D biplane sSMLM method reported here, such constraint can be relaxed as the corresponding beam paths of the zeroth- and first-order images are manipulated independently. Assuming the illumination fully covers the entire FOV, the achievable FOV of our 3D biplane sSMLM using a 100x objective lens is ~ 40 × 40 µm2. In this study, due to the constraint of illumination beam shape, the FOV of the acquired images was ~ 15 × 30 µm2.  
2. Spatial localization precision and spectral precision
of 3D biplane sSMLM imagingWe first estimated the lateral localization precision in 3D biplane sSMLM using maximum-likelihood estimation (MLE) method as reported by Mortensen and Rieger [1, 2]:  Δ =  ⁄ (1 + 4 + ), where =  ( ⁄ );  is the noise factor when using the EMCCD camera (typically 2);  is the standard deviation of a fitted Gaussian PSF in nm; a is the back-projected pixel size in nm; N is the number of photons detected for a given molecule; and b is the background photons. The expected lateral localization precision shown in Fig. S1(a) (blue solid line) was estimated based on Cramer–Rao lower bound (CRLB) using actual experimental 

conditions. In addition, we further quantified the lateral localization precision experimentally using far-red fluorescent nanosphere (200-nm diameter; F8807, InvitrogenTM) as the test subject. By controlling the illumination power and integration time, we constrained the recorded photon numbers within the zeroth order image in the range of 500 to 1500, which corresponds to the photon number in our sSMLM measurements. We estimated the lateral localization precision using the standard deviation of 100 recorded image frames of the same far-red fluorescent nanosphere. As shown in Fig. S1(a), the experimentally obtained lateral localization precision agrees well with theoretical estimate. Regarding the spectral precision, we have recently published the theoretical model in Ref. [3]. Using this model, the expected spectral localization precision is shown in Fig. S1(b) as blue solid line. In addition, we further quantified the spectral precision from the experimental data, which corresponds to the photon numbers in the range of 1500 to 4500 in the spectral image. As shown in Fig. S1(b), the experimental results agree-well with the theoretical estimation. Finally, we estimated the axial precision with respect to the z position using a representative case marked as green circle shown in the inset in Fig. S1(a). Our established theoretical model for spectral precision [3] captures the localization precision in the spectral images. It can be further extended to the 3D biplane sSMLM imaging to estimate the axial precision based on a calibration measurement; we first obtained the sigma value of the PSF corresponding to different axial position from a calibration curve. Using this value, we generated spatial and spectral images in the numerical simulation reported in Ref. [3]. Then, we calculated 
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