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This document provides supplementary information to “Brillouin scattering in hybrid optophononic 
Bragg micropillar resonators at 300 GHz,” https://doi.org/10.1364/OPTICA.6.000854. In this document, we 
present the photoelastic model used to simulate the anti-Stokes Brillouin scattering cross-section in planar and 
micropillars structures, additional measurements on the polarization dependence of the Brillouin signal 
in micropillars and further details on the spatial filtering technique developed to probe the confined 
acoustic phonons in the optophononic resonators.  

S1. Photoelastic model of the anti-Stokes Brillouin 
scattering cross-section  To model the Brillouin anti-Stokes scattering cross-section  + , we base our simulations on a transfer matrix implementation of a one-dimensional photoelastic model.  For the photoelastic interaction, we consider the following overlap integral 1: 
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where  is the frequency of the excitation laser. Here, ,denotes the normal strain in the z-direction induced by the mechanical mode at a frequency . ,  and , +  are the incident and the Brillouin-scattered optical fields, and ,  is the p12 component of the photoelastic tensor. Note that at room temperature the fundamental electronic transition in GaAs is at 1.52 eV, such that the experiments are performed under nearly-resonant conditions. The Brillouin spectrum is thus dominated by the photoelastic contributions from the GaAs layers. 

This 1D model has been successfully used in the case of planar structures1–7. In the case of micropillars, we apply the following simplifications: 1) The longitudinal acoustic field is confined in the vertical direction so only one component of the acoustic field is considered. 2) The only relevant components of the photoelastic tensor are 
p11 and p128. To simplify the model we assume a single generic value p12 taking into account that the acoustic phononsconsidered here are purely longitudinal. 3) The electric field profile has a vertical distribution identical to the planar case, and the radial modulation only introduces an envelope. Moreover, we consider that the spatial profiles for the incoming photons ,  (excitation) and the emitted photons ∗ , +  (Brillouin) are identical, since the frequency shift induced by the longitudinal phonons is small when compared to the considered optical frequencies, so the expression for the electric fields simplifies to | , | . 
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For the materials GaAs and AlAs we use the following well-established optical and elastic parameters at room temperature: Speed of sound (m/s) Density (kg/m3) Refractive index GaAs 4780 5350 3.5373 AlAs 5660 3770 2.9624 
Table S1: Acoustic and optical parameters used in the design of micropillar cavity devices discussed in the manuscript. 
Using the integral in Eq. (1) in conjunction with the values tabulated above, we reach good agreement between calculation and experimental results for both planar structures and micropillars, as shown in Figure 2 of the main text.  The major design consideration for the Brillouin frequencies explored in this work are the layer thicknesses of the two acoustic distributed Bragg reflectors (DBRs) formed by 16 periods of 7.3nm/9.8nm (8.5nm/8.2nm) GaAs/AlAs layers. With the parameters tabulated in S1 these thicknesses are chosen such that each layer pair corresponds to half a wavelength of acoustic path at a phonon frequency of 320GHz. That is, an acoustic bandgap appears centered at this frequency. The particular combination of two DBRs supports the formation of a confined state at their interface3,9. This is the confined phonon mode leading to the formation of the main Brillouin peak in the experimental spectra reported in our work.  The validity of our modelling is reflected in its correct prediction of both the position, frequency difference and even relative height of the different contribution to the Brillouin spectra measured on micropillar devices. 
S2. Polarization dependence of the Brillouin signal We have measured the polarization of the Brillouin emission. To this end, we ensured linear polarization of the incident laser and recorded spontaneous Brillouin spectra after transmission through a second analyzing polarizer, which was placed between the spatial filtering aperture and the entrance to the spectrometer (see schematic in Figure 1 of the main text). In Figure S1 below we show the measured Brillouin intensity (more precisely the integrated area of the main Brillouin peak) as a function of the analyzer angle and superimposed the result with a cos2 fit. We observe that the Brillouin emission is linearly polarized along the laser with a degree of polarization larger than 99%.  

Figure S1 : Polarization of Brillouin emission upon linear optical excitation. Desplayed is the area under the central peak of the Brillouin spectrum. The degree of linear polarization in the Brillouin emission is larger than 99%. 
S3. Spatial filtering of the Brillouin signals in planar 
and pillar microcavities Since the Brillouin signal is resonantly coupled out of our device through to the fundamental micropillar mode, the spatial emission pattern of the Brillouin beam corresponds to the emission profile of the micropillar mode. The optical modes of micropillar cavities have been extensively studied in the context of single photon emitters and polaritonic systems and it has been shown that the characteristic emission is almost identical to the mode of an optical fiber, i.e. a Gaussian beam10–14. In fact, the existence of a well-defined Brillouin beam is an important consideration in order to understand the working principle of the novel filtering technique. The latter is based on the use of a spatial filter, which is located close to the back-focal plane. Only due to the difference between the Gaussian spatial pattern of the micropillar mode and the ring-type pattern resulting from the diffracted excitation laser, we are able to spatially separate the two and isolate part of the spontaneous Brillouin scattering signal.  To further illustrate this point, the two sketches in Fig. S2 compare the experimental configuration on a micropillar and a planar microcavity, which was used for comparison in our study. Figure S2 (b) shows the configuration on a micropillar with the Gaussian Brillouin beam emerging from the resonator superimposed with the ring-shaped laser diffraction pattern. Figure S2 (a) shows the corresponding geometry on a planar structure. Here, the laser impinging under normal incidence with a small opening angle is not diffracted, but reflected back on its original path. The part of the laser which enters the cavity and interacts with the high frequency acoustic superlattice structure leads to the generation of a Brillouin signal at 320GHz. Instead of a discrete set of optical modes, the resonance energy of a planar optical microcavity shows a continuous parabolic dependence on the incidence angle. If the laser is thus resonant with the cavity under normal incidence, the Brillouin signal frequency-shifted by 320GHz from the laser will exhibit a resonance at a finite angle of incidence. This phenomenon is usually termed a double optical resonance (DOR) and has been employed to enhance Raman and Brillouin signals in planar configurations.6,7,15 
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