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This document provides supplementary information to “Topological transformation of speck-
les,” https://doi.org/10.1364/OPTICA.6.000914. The first section provides expended 
descriptions of the methods used to acquire and process the experimental data: details are 
given on the phase mask displayed on the spatial light modulator, the numerical treatment of 
the recorded speckle patterns is presented, and the algorithms for the detection of critical 
points are given. The second section contains numerical confirmations of the experimental 
results, as well as an extension (in numerical simulation) of the range of tested 
binary amplitude apertures: the Weighted Median Normalized Distances are shown for 
star-like amplitude masks with dihedral symmetries of orders higher than 4, for star-like 
amplitude masks with larger angular slits, and for polygonal apertures.

1. EXPERIMENTAL DATA ACQUISITION AND PROCESS-
ING

A. Phase mask on the SLM

The laser source was a laser diode emitting at λ = 635 mm. The
laser beam was spatially filtered with a pinhole, expanded and
collimated to cover the surface of the Spatial Light Modulator
(SLM). The phase at the SLM was computed according to the
scheme shown in Fig. S1.

The scattering phase pattern at the SLM (or diffuser in Fig. S1)
was engineered in order to both generate a fully developed
speckle pattern at the camera plane and to minimize energy
losses by controling the scattering angle. To achieve so, a com-
plex matrix of dimension 396 × 396 pixels (half of the long-
axis of the SLM) was generated numerically, with uniform
amplitude and random phases evenly distributed between 0
and 2π. This random matrix was then multiplied by a disk-
shaped amplitude mask of radius 60 SLM pixels (SLM pixel size
: px2

SLM = 20× 20 µm2) and Fourier transformed numerically
to generate the random phase mask at the SLM plane. Provided

the optical design of the setup and the focal distance of the
lens f = 750 mm, this mask corresponds to a disk of diameter
60

400 ×
2.λ. f
pxSLM

' 8.8 mm, slightly larger than the camera diagonal
(7.62 mm), so ensuring uniform illumination of the camera chip
(on average) and minimization of energy losses.

The BA amplitude mask were applied to the phase mask by
setting the SLM phase to zero where the amplitude of the BA
mask equals zero, and by adding a blazed grating where the
amplitude of the BA mask equals one. The radius of the BA
masks was chosen to have a speckle grain size of 15 camera
pixels (camera pixel size: 4.65× 4.65 µm2). The blazed grating
had a period of 4.34 SLM pixels (SLM pixel size : 20× 20 µm2),
which yields a deflection angle of 7.31 mrad. With the focal
distance of the lens f = 750 mm, this deflection angle provides a
5 mm shift of the zero order as compared to the speckle pattern.
Because of the camera field of view (4.76 mm× 5.95 mm), the
undiffracted zero-order was centered at a distance 2.5 mm away
from the camera sensor and could then efficiently be blocked
with no spurious light observed on the camera.

https://doi.org/10.1364/OPTICA.6.000914
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Fig. S1. Computation of the phase displayed at the SLM. The SLM is virtually split into two parts of surfaces 396× 396 pixels, each
bearing pupils of different shapes, one for the reference beam (green), the other for the signal beam (blue). A tilt is applied to both
beams in order to shift the speckle pattern of interest away from the unmodulated light. A defocus is added to the reference beam
to cover the caerma surface, while the signal beams receives a random phase mask (or diffuser). Finally, the phase step and spiral
wavefronts are added.

For the reference beam, the same blazed grating was applied
to a disk-shaped aperture separated from the scattering aper-
ture. The radius of the disk was chosen so that the signal beam
(scattered wavefield) and the reference beam have similar ampli-
tudes at the camera plane. A defocus (Fresnel lens) was applied
to the reference beam to cover the camera surface.

B. Numerical treatment of experimental data

The complex wavefield AneiΦn at the camera plane was mea-
sured with the following procedure. The phase Φn was ob-
tained thanks to the intensity modulation induced by the
phase-stepping interferometric measurements [1, 2]. The phase-
stepping was performed by acquiring eight successive images
with relative phase-shifts between the signal and reference
waves: k × 2π/N, with N = 8 and k ∈ J0; 7K. The phase of
the speckle pattern was obtained from phase-stepped intensity
measurements:

In,k =
∣∣∣ERe

2ikπ
N + AneiΦn

∣∣∣2 (S1)

= |ER|2 + |An|2 + ER Ane−iΦn e
2ikπ

N + E∗R AneiΦn e−
2ikπ

N

The phase can then be trivially retrieved by computing the argu-
ment of the following sum:

N−1

∑
k=0

In,k × e
2ikπ

N = E∗R AneiΦn (S2)

In our case, the reference beam did not exhibit a flat phase but a
combination of a parabolic curvature as well as a relative phase
tilt with respect to the speckled beam. Both of these profiles
were numerically removed from the computed phase Φn. The
magnitude An was not computed using this result to avoid
amplitude uncertainties about the reference beam. Instead, An
was obtained from the signal speckle intensity In without any
reference beam: An =

√
In.

For all the apertures and all the speckle patterns, the Full
Width Half Maximum (FWHM) of the point spread function (i.e.
the speckle grain size) corresponded to 15 camera pixels, leading
a fine spatial sampling of the speckle field. We set the length unit

to 15 pixels and the corresponding spatial sampling frequency to
15 pixel−1. For noise removal, the complex amplitude field was
filtered in the Fourier domain by zeroing the values correspond-

ing to spatial frequencies outside of the disk
√

f 2
x + f 2

y 6 0.5

pixel−1. Because of the spatial filtering by optical system, the
frequencies outside of this disk contain only optical and elec-
tronic noise. We verified that the strongest spectral values of the
complex field were within the disk. After this filtering process,
experimental noise was not found to interfere with the detection
of the critical points.

C. Detection of the critical points
The detection of critical points in the experimental speckle
pattern is illustrated in Fig. S2. The pixel-precise locations
of the critical points were determined in the spatial do-
main using the topology of each pixel neighborhood. For
the intensity maxima M, the intensity saddles SI and the
phase saddles Sp, the eight neighbors of each pixel were
used. We used the Matlab function developed by Tristan
Ursell and made available in May 2013 (image extrema finder,
https://fr.mathworks.com/matlabcentral/fileexchange/41955-
find-image-extrema). For the vortices V+ and V−, we used
the fact that the summed phase shifts on a closed loop around
a vortex is greater than 2π. As a dicretised closed loop, we
computed this sum over four neighbouring pixels, the phase
differences between the adjacent corners of the square being
computed and wrapped in the range

]
− π, π

]
. The summed

phase shift was computed by adding the four phase differences,
leading to a summed phase shift of ±2π around a vortex of
charge ±1 and a summed phase shift close to zero elsewhere [3].

2. NUMERICAL SIMULATIONS OF SCALAR RANDOM
WAVEFIELDS

Numerical simulations of scalar random wavefields were per-
formed to confirm our experimental results with larger statistics
on critical points, independent random phase media and an inde-
pendent method (section 2B). Indeed, larger speckle patterns can
be generated numerically directly from randomly distributed
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Fig. S2. Detected critical points superimposed to the filtered
experimental intensity (left) and phase (right) patterns ob-
tained with the aperture BA∞. The displayed pattern corre-
spond to an area of 150 × 150 pixels on the camera. Phase
vortices (V+ and V−) are also zeros of the intensity pattern.
Notations for the critical points are identical to those intro-
duced in the core of the main article.

phase. Additionally, we extended our investigations to apertures
with point group symmetries of orders higher than 4 (section 2C),
as well as to apertures with larger angular slits (section 2D) and
to polygon apertures (section 2E).

A. Methods for the numerical simulation
The far-field of uniformly-illuminated apertures comprised of
random phases (standard uniform distribution between 0 and
2π,) with spiral phase (SP) masks of order n ∈ J−6; 6K, was com-
puted to simulate the complex wavefield AneiΦn . The speckle
patterns were obtained by computing the two-dimensional
Fourier transform of the apertures addressed with random
phases. As in the experimental procedure, an uncorrelated
speckle pattern was also computed for each aperture. For
all the apertures, the speckle grain size (FWHM) was set to
λ/(2.NA) = 19 pixels where λ is the optical wavelength and
NA is the numerical aperture, and a square grid of 17 mega
pixels was computed. The pixel-precise location of the critical
points were determined in the spatial domain using the topol-
ogy of each pixel neighborhood, as for the experimental speckle
patterns.

These parameters lead to a count of critical points for the aper-
ture BA∞ of ∼ 104 vortices of each sign. The average number-
densities of the critical points for the apertures BA∞, BA3 and
BA4 are presented in Table S1. The slight differences in number-
densities between experimental and simulation measurements
can be attributed to the higher number of critical points in the
simulation, which leads to better precision in the estimation of
the critical point densities.

Table S1. Measured average number density of critical
points from numerical simulations (length unit: λ/(2.NA)).
The average number of V− is 9551.43 for the circular aper-
ture (BA∞).

BA mask V−(or V+) M Sp SI

BA∞ 0.20 0.32 0.39 0.67

BA3 0.21 0.38 0.39 0.75

BA4 0.20 0.34 0.43 0.70

B. Validation of the experimental results
To support our experimental measurements, numerical simu-
lations were performed for the apertures BA∞, BA3 and BA4.
The resulting Weighted Median Normalized Distances (WMND)
are presented in Fig. S3. Despite the difference in the method to
generate the speckle field, the size of the speckle grains, and the
number of critical points involved in the statistical estimation
of the WMNDs, our experimental results are remarkably con-
sistent with numerical ones. Our experimental results are then
validated in two regards. First, the results are robust to modifi-
cations in (i) the method to generate the speckle patterns, (ii) the
scattering medium and (iii) the spatial sampling. Second, our
experimental estimation of the WMND are statistically relevant
since a higher average number of critical points did not lead to
significantly different WMND.
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Fig. S3. Weighted Median Normalized Distance (WMND) for
all possible pairs of critical points screened here, for the addi-
tion of spiral phase mask with charges up to n =±6 and for the
apertures BAN (N ∈ {3, 4, ∞}. The WMND were computed
from numerical simulations.

C. Point group symetries of higher order
We investigated in numerical simulation the effect of an increase
in the order of the dihedral point group symmetry. For this
purpose, we used the apertures BAN with N ∈ {5, 6, 7, 8} ( point
group symmetry DN), as defined in the main article. Because
of the strong anisotropy of the central peak of its point spread
function, the aperture BA2 could not be compared to the other
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apertures, and therefore was not computed. The WMND are
presented in Fig. S4.

As expected for N= 5 or 6, the WMND(Y0, Y±N) are close
to zero (transformation rate close to 1). We can also notice that,
for BA7 and n ∈ J−3; 3K, as well as for BA8 and n ∈ J−4; 4K, the
same WMND

(
V+

0 , X±n
)

as for BA∞ are found. The topological
correlations for BA∞ correspond to a single spiral mode, while
the spiral spectrum of BA8 contains harmonics. The first har-
monics are the spiral modes m = ±8 and are for spiral modes
high enough so that, for the pairs

(
V+

0 , X±n
)
, the topological

correlations of the fundamental mode (m = 0 as in BA∞) domi-
nates for n ∈ J−4; 4K. For smaller N, the topological correlations
between critical points are dictated by both the fundamental
mode and the harmonics which leads to more complex WMND
diagrams. This is this true in particular for BA3 and BA4.

D. Influence of the width of the angular slits
The influence of the width of the angular slits was investigated in
numerical simulation. Simulation were performed for periodic
angular slits with a point group symmetry D3 and three different
widths of angular slits were tested : π

16 (i.e. BA3), π
8 , and π

4 . The
WMND are presented in Fig. S5.

We can notice that the WMND(Y, Y±6) increases with the
increasing width of the slits, and even becomes equal to 0.5 for
the largest slits. This results was expected considering the spiral
spectrum of the apertures. All the considered apertures have
harmonics at the spiral modes m = k.N with k ∈ Z. However,
the amplitude of the harmonics is given by a sinc apodisation
function which FWHM depends on the width of the angular slits.
For the angular slit π

16 , the FWHM of the spectral apodization
function corresponds to n= ±19. As a consequence, the aperture
could be considered as spectrally invariant by the addition of
SPn when n = ±3 or ±6. For angular slits of width : π

8 and π
4 ,

the FWHM of the spectral apodization function corresponds to
n= ±10 and n= ±5, respectively. Consequently, the apertures
are spectrally modified by the addition of SP±6.

In the experimental procedure, the width of the angular slits
was chosen large enough so that the dark center induced by
the spatial sampling of the SLM pixels has a radius below 2
SLM pixels. However, the width was chosen small enough
to keep a spectral invariance in the range n ∈ J−6; 6K. Both
the dihedral symmetry and the width of the angular slit are
important parmeters to observe the periodicity of the critical
point transformation.

E. Polygonal apertures
Polygonal apertures with dihedral symmetries D3 (equilateral
triangle) and D4 (square) were used to extend our study to
other aperture shapes. The WMND computed from numerical
simulations are shown in Fig. S6.

For the triangular aperture, topological correlations are ob-
served for the pairs (M0, M±3), but no cyclic permutation be-
tween V−, M and V+ can be noticed. For the square, the
WMND is very similar to the one of BA∞ (disk). These results
can be explained by the fact that, for N-gons, the Nth spiral
harmonics have a much lower amplitude than the fundamental
spiral mode (m = 0). The spiral spectrum is therefore not invari-
ant by the addition of a SPN mask. Moreover, for the triangular
aperture, the point spread function (PSF) is an optical lattice
which spatial extend expends as the charge of the SP mask in-
creases [4]. Thereby, the maximum values of the PSF decreases,
which strongly limits any possible control of the transformation
of the critical points.
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Fig. S4. WMND for all possible pairs of critical points
screened here, for the addition of spiral phase mask with
charges up to n =±6 and for the apertures BAN with N ∈
{5, 6, 7, 8}. The WMND were computed from numerical simu-
lations.
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Fig. S5. Weighted Median Normalized Distance (WMND)
for all possible pairs of critical points screened here, for the
addition of spiral phase mask with charges up to n =±6 and
for apertures with dihedral symmetry D3 and angular slits of
width : π

16 , π
8 , and π

4 , respectively (from top to bottom). The
WMND were computed from numerical simulations.
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Fig. S6. WMND for all possible pairs of critical points
screened here, for the addition of spiral phase mask with
charges up to n =±6 and for a disk aperture (top) and polyg-
onal apertures : equilateral triangle (dihedral symmetry D3)
and square (dihedral symmetry D4). The WMND were com-
puted from numerical simulations.



Supplementary Material 6

REFERENCES

1. D. Robinson and D. Williams, “Digital phase stepping
speckle interferometry,” Opt. Commun. 57, 26 – 30 (1986).

2. K. Creath and J. Schmit, “Interferometry | phase-
measurement interferometry,” in Encyclopedia of Modern
Optics, R. D. Guenther, ed. (Elsevier, Oxford, 2005), pp. 364
– 374.

3. R. Bräuer, F. Wyrowski, and O. Bryngdahl, “Diffusers in
digital holography,” J. Opt. Soc. Am. A 8, 572–578 (1991).

4. J. M. Hickmann, E. J. S. Fonseca, W. C. Soares, and
S. Chávez-Cerda, “Unveiling a truncated optical lattice
associated with a triangular aperture using light’s orbital
angular momentum,” Phys. Rev. Lett. 105, 053904 (2010).


	Experimental data acquisition and processing
	Phase mask on the SLM
	Numerical treatment of experimental data
	Detection of the critical points

	Numerical simulations of scalar random wavefields
	Methods for the numerical simulation
	Validation of the experimental results
	Point group symetries of higher order
	Influence of the width of the angular slits
	Polygonal apertures




