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This document provides supplementary information to “Wireless THz link with optoelectronic transmitter 
and receiver,” https://doi.org/10.1364/OPTICA.6.001063. It contains derivations of mathematical relations, 
details of the optoelectronic T-wave receiver implementation, as well as a discussion of the receiver 
conversion efficiency, bandwidth and noise. Furthermore, we give a comprehensive description of the 
wireless THz link including a characterization of the T-wave amplifiers and the uni-travelling-carrier 
photodiode (UTC-PD). 

1. Mathematical modelIn the main paper, we show coherent wireless THz communications using an optoelectronic receiver [1–3] and a tunable photonic local oscillator (LO). The concept of optoelectronic down-conversion in a photoconductive T-wave receiver (Rx) is illustrated in Fig. 2(a) of the main paper. In the following, we give a detailed derivation of the associated mathematical model.  The T-wave data signal from the transmitter (Tx) at an angular carrier frequency ω =S S2π f  is received by a bow-tie antenna resulting in a T-wave voltage  across its feed points, 
( ) ( ) ( )( )S S S

ˆ cosU t U t t tω ϕ= + .  (S1) In this relation, ( )SÛ t  is the modulated T-wave voltage amplitude, and 
( )ϕS t  is the associated modulated phase. The antenna feed points are connected to a photoconductor G , which is illuminated by the superposition of two unmodulated optical fields ( )LO,aE t  and

( )LO,bE t  with frequencies ωLO,a , ωLO,b , amplitudes LO,aÊ , LO,bˆ ,Eand phases ϕLO,a , ϕLO,b ,   
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This leads to an optical power, which oscillates at a frequency 
ω ω ω= −LO LO,a LO,b  and has an amplitude LO,1P̂ , 

( ) ( )LO LO,0 LO,1 LO P,LO
ˆ cosP t P P tω ϕ= + + . (S3) The quantities LO,0P , LO,1P̂  are expressed by the (normalized) electrical field strengths, and the phase ϕP,LO  is given by the relative phases of the optical tones, 
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The photocarriers generated by the absorbed optical power change the photoconductance according to  
( ) ( ) ( )LO 0 LO LL OO

ˆ cosGG t P t G tω ϕ= = + + ,  (S5)where   denotes a proportionality constant that describes the sensitivity of the photoconductor. Note that the phase ϕLO  of the conductance oscillation might differ from the phase of the optical power oscillation ϕP,LO  in case the period of the LO power oscillation is of the same order of magnitude as the lifetime of the free carriers in 
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the photoconductor. The resulting current ( )I t  through thephotoconductor is then given by the product of the time-varying conductance ( )G t  and the time-varying voltage ( )U t , 
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After amplification of the current ( )I t  using a transimpedanceamplifier (TIA), only the low-frequency-part (3) of Eq. (S6) remains. This leads to a down-converted current at the intermediate frequency 
ω ω ω= −IF S LO ,  

( ) ( ) ( )( )1
IF LO S IF S LO2

ˆ ˆ cosI t G U t t tω ϕ ϕ= + − .  (S7)The intermediate signal hence contains the amplitude and phase information of the T-wave data signal and can be processed by low-frequency electronics.  
2. T-wave receiverThis section gives details of the implementation and the characterization of the optoelectronic Rx used in our experiments. Figure S1 shows images of our Rx module. The photoconductor [1,2] is connected to the feed points of the bow-tie antenna, see Fig. S1(a). The antenna is electrically bonded to a transimpedance amplifier (TIA, Maxim Integrated [4] PHY1097) for processing the down-converted intermediate-frequency current. Note that the TIA is originally designed for amplification of receiver signals in a passive optical network, where the photodiode is reverse-biased by the TIA. In our application, the photoconductor does not require a bias voltage and we hence use a capacitor C to decouple the photoconductor from the DC bias at the TIA input terminals. Metal wire bonds are used to 

electrically connect the output of the TIA to a printed circuit board (PCB) consisting of a gold-plated alumina ceramic substrate. The photoconductor is illuminated from the top with the time-dependent optical power ( )LOP t , which is coupled to the active region of the device from the horizontally positioned fiber by a photonic wire bond [5,6], see inset of Fig. S1(a). The assembly is placed on a silicon lens which focuses the T-wave incoming from below onto the antenna, see Fig. 2(c) of the main manuscript. All components are placed in a metal housing for electromagnetic shielding of the Rx circuits and for simplified handing of the assembly. The fully packaged Rx is shown in Fig. S1(b). The photonic LO is fed to the Rx with a fiber, and the down-converted RF data signal (“data out”) is processed further by standard laboratory equipment. In the following, we give a detailed characterization of the Rx in terms of conversion efficiency, bandwidth, and noise. 
Conversion efficiency First we quantify the frequency-dependent response of the photoconductor connected to a bow-tie antenna. We define the conversion efficiency η  as the ratio of the output power at the intermediate frequency in a Ω50  load resistor related to the incident THz power THzP . The conversion efficiency is measured with a photoconductor very similar to the one used for the data transmission experiment. Details are published elsewhere [1]. For this measurement, the same continuous-wave (c.w.) lasers are used for both the Tx and the Rx LO, i. e, ω ω=S LO . One of the Tx lasers is phase-modulated [7,8] by a saw-tooth signal with maximum amplitude of π2  and repetition period π ωm2 where
ω π= ×m 2 15kHz . The resulting voltage at the Rx antenna feed points is then modulated according to Eq. (S1) , 

( ) ( )( )ω ω ϕ= + − SS S mˆ cosU t U t . After down-conversion, the current according to Eq. (S7) becomes ( ) ( )ω ϕ ϕ= + −IF IF m S LOˆ cosI t I t  with 
= 1IF LO2 ˆˆ ˆ

SI G U . The current amplitude IFÎ  is measured with a lock-inamplifier (LIA) tuned to the modulation frequency ωm . We change the T-wave frequency ω ω=S LO and measure IFÎ  with the LIA along with the incident THz power THzP using a calibrated pyroelectric thin film detector (Sensor- und Lasertechnik GmbH, THz20).  The conversion efficiency η  is then found as 

Fig. S1. Optoelectronic coherent T-wave Rx. (a) Microscope image of the Rx module. The photoconductor (PC) is connected to an on-chip bow-
tie antenna, which is electrically bonded to a transimpedance amplifier (TIA). For better visibility, the contour of the bow-tie antenna is marked by 
green lines. The capacitor C = 1 nF is used to decoupled the photoconductor from the DC bias voltage that is supplied by the TIA at its input. 
Metal wire bonds are used to electrically connect the output of the TIA to a printed circuit board (PCB) consisting of a gold-plated alumina 
ceramic substrate. The PCB includes sub-miniature plugs for off-chip RF and DC connections. The photoconductor is illuminated by the time-
dependent optical LO power ( )LOP t  through a fiber and a 3D-printed photonic wire bond, see inset for details. (b) Fully packaged Rx module.
The photoconductor, antenna, TIA, and PCB are glued to a silicon lens for coupling the T-wave incident from below to the on-chip bow-tie 
antenna. All components are placed inside a metal housing for electromagnetic shielding of the Rx circuits. The photonic LO is fed to the Rx with 
a fiber. The down-converted data signal (“data out”) is processed further by standard RF-equipment connected to the sub-miniature plugs on the 
PCB.  
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litude LOĜ  of ude of ( )IFI t  the optical LO e intermediate output of the aken to obtain periments, the f the LO power he conversion t high optical the future by cal LO power ing alternative photoemission 
is extremely ed by the TIA amplifying the dB bandwidth where the TIA assive optical 

Measurement 
at a constant 
by photomixing 
signal is down-
ith frequency 
the targeted 
of the down-
ctrum analyzer 
e obtain the IF 
ency response 
or frequencies 
r than 1.4 GHz 
his to fact that 

the TIA input 
h the device is 



 

 

neshSfdoLf12usfreobvathto baattcoph

Fig.
incid

LOP

Fig.
gen
spe
the 
ante
lens
cou
T-w

etwork. To measuhown in Fig S4(a
= − =S S,a S,b 0f fown-converted u
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photodiode (UTC-PD). In the UTC-PD, the optical signal is converted to a T-wave signal with frequency = −S S,a S,bf f f  (O/T - conversion). The T-wave is radiated to free space by a horn antenna and a subsequent Polytetrafluorethylen (PTFE) lens (Thorlabs, LAT200).  After a transmission distance of 58 m, the T-wave is captured by another PTFE lens and coupled to a WR 3.4 hollow waveguide by a horn antenna. The waveguide is connected to the input of two cascaded T−wave amplifiers [11,12], which compensate the free-space transmission loss and amplify the T-wave. In our current design, we use another horn antenna at the output of the second T-wave amplifier in combination with a silicon lens to couple the T-wave to the photoconductor. In the future, the performance of the scheme may be further improved by replacing this assembly with a waveguide-coupled photoconductor. For generating the photonic LO, two c.w. laser tones with optical frequencies LO,af  and LO,bf  are superimposed using a polarization-maintaining 50/50 coupler, thus generating an optical power beat. The beat signal is amplified by an EDFA followed by a 3 nm filter to reduce ASE noise. A polarization controller is used to maximize the electric IF signal at the output of the polarization-sensitive photoconductor. The optical power LOP  coupled to the photoconductor can be adjusted by another optical attenuator (Att.), and a subsequent optical tap is used for measuring the optical spectra shown in Fig. 3(a) and Fig. 5(b) of the main manuscript. The down-converted IF signal is coupled to the TIA, the output voltage of which is sampled and stored in a real-time oscilloscope (Osc.) for further offline signal processing. Figure S6(b) shows a photograph of the wireless transmission link. The image on the left shows the Tx including the UTC-PD and the T-wave PTFE lens. The Rx is 58 m away from the Tx. On the right-hand image, the Rx including the T-wave PTFE lens, the T-wave amplifiers and the Rx module is shown in more detail. To facilitate identification of the components shown in the setup sketch of Fig. S6(a), we mark them with the letters A … I. For finding optimum operation parameters, we characterize the performance of the wireless link shown in Fig. S6 for different optical powers ( )SP t  and powers ( )LOP t  at the Tx and the Rx,  
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In our measurements, we again adjust the c.w. lasers at the Tx and Rx such that the average power S,0P  and LO,0P  of the combined optical signal are equal to the amplitude S,1P̂  and LO,1P̂  of the respective power oscillation, =S,0 S,1ˆP P  and =LO,0 LO,1ˆP P . The Tx and Rx frequencies are set to =S 0.310 THzf  and =LO 0.309 THzf , respectively. For studying the transmission performance, we generate a quadrature phase-shift keying (QPSK) signal with a line rate of 
=b 2Gbit/ sR  at the Tx and measure its bit error ratio (BER) after down-conversion at the Rx. Figure S7(a) shows the BER (red dots) obtained for various average powers =S,0 S,1ˆP P  of the combined optical signal at the Tx and for a constant optical LO power of = =LO,0 LO,1ˆ 80mWP P  at the Rx. For some measurement points, the signal quality is that high that we could not measure any errors in a recording length of 105 symbols. We therefore estimate the BER from the error vector magnitude [13] (blue dots). For an optical power of >S,1ˆ 8mW,P  the signal quality decreases because the T-wave amplifiers saturate, see constellation diagrams in the right-hand column of Fig. S7(a). In this case, we observe an asymmetric distribution of the noise around the various 

constellation points, see also Fig. 3(b) of the main manuscript, whereas a symmetric distribution is observed for low optical powers.  Figure S7(b) shows the BER measured for a 1 GBd QPSK signal at  various average powers =LO,0 LO,1ˆP P  of the combined optical LO signal at the Rx. In this case, the average power of the combined optical Tx signal is kept constant at = =S,0 S,1ˆ 12mWP P , close to its optimum point shown in Fig. S7(a). The signal quality improves with increasing optical LO power LO,1P̂  and is finally limited by the maximum optical power that the photoconductor can withstand. Figure S7 also indicates that higher-order modulation formats such as 16-state quadrature amplitude modulation (16QAM) might be within reach in future experiments: For a 1 GBd QPSK signal, we estimated a minimum BER of −910 , Fig. S7(a), corresponding to an SNR of roughly 16 dB when assuming that additive white Gaussian noise is the dominating impairment. From Fig. 10 of [14], this SNR would lead to a BER of roughly 3 ×10-3  for 16QAM, which would be below the threshold for FEC with 7 % coding overhead. With further improvements of the photoconductor and the transimpedance amplifiers, higher-order modulation formats might hence become possible. If we distribute the T-wave power over multiple channels, see Section “Multi-channel transmission” of the main manuscript, the BER 

Fig. S7. Measured and estimated bit error ratio (BER) for different 
optical Tx and LO powers. As a test signal, we transmit a 1 GBd 
QPSK data signal. The T-wave carrier frequency is set to 

=S 0.310 THzf . (a) BER vs. optical power modulation 
amplitude =S,0 S,1

ˆP P  at the Tx. Red dots denote values that were 
directly measured, whereas blue dots refer to BER values estimated 
from the respective error vector magnitude (EVM). Since the length 
of our signal recordings was limited to 105 symbols, the lowest 
statistically reliable measured BER amounts to 10-4. For measured 
BER values above this threshold, directly measured and estimated 
BER show good agreement, giving us confidence that the EVM-
based estimations for BER < 10-4 are valid. (b) BER as a function of 
the LO power amplitude =LO,0 LO,1

ˆP P . The signal quality improves 
with increasing optical LO power LO,1P̂  and is finally limited by the 
maximum optical power that the photoconductor can withstand. 
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