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Waveguide Array Modes:  
Our fishnet structures consist of two arrays of vertical dielectric slab 
waveguides (orthogonal to one another). We thus expect that the 
optical response of our fishnet structures can be understood by 
considering them to be high contrast gratings (HCGs). The work of 
Chang-Hasnain et al provides explicit details on the physics of such 
structures[1], including a derivation of dispersion relation used in 
the work presented here. The primary difference between a stand-
alone vertical slab waveguide and a near-wavelength waveguide 
array (WGA) is that for the stand-alone case near the cut-off 
wavelength of a mode, energy from that mode is mostly directed out 
of the waveguide sidewalls that is, the fields close to cut-off become 
spread out, well beyond the core of the waveguide. For the WGA 
case near cut-off the fields from each waveguide mode extend well 
beyond the sidewalls of one waveguide and into the neighboring 
waveguide through its sidewalls and so on. So near a mode cut-off 
wavelength the guided light interacts with multiple neighboring 
waveguides in the array. Now, when operating the waveguide 
where the materials optical properties lead to strong absorption of 
light, such as visible light in silicon, this process can lead to very large 
fractional absorption coefficients. For example, Figure S1(a) shows 
FEM simulations for a 400 nm period WGA illuminated with 
normally incident TE polarized light. The red curves show the cut-
off wavelengths for the TE2, TE4 and TE6 modes, as given by HCG 
theory. It can be seen that similar to the TM mode behavior, the 
fractional absorption peaks near the calculated mode cut-off 
wavelengths. Figures S1(b)&(c) show the effect of array period on 
the mode cut-off wavelengths. Figure S1(b) shows the TM2 mode 
cut-off as a function of waveguide thickness for six different array 
periods. It is clear that as period increases, the TM2 cut-off 
wavelengths red-shift. This is a useful feature, since it is much easier 
to control the array period during fabrication than controlling the 
waveguide widths that result after etching. Figure S1(c) shows the 
cut-off wavelengths for several (even) TM and TE modes as a 

function of period, Λ, for a set of 135 nm wide waveguides. Here we 
see that the modes are mostly non-degenerate except at certain 
values of Λ. We also see that as we move to higher order modes, the 
mode spacing reduces. This leads to wider absorption bands at 
these wavelengths.   

This document provides supplementary information to "Silicon microspectrometer chip based on 
nanostructured fishnet photodetectors with tailored responsivities and machine learning," 
https://doi.org/10.1364/optica.6.001171.
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Figure S1: (a) FEM absorption calculations for a 400 nm period 
WGA illuminated with TE polarized light, with theoretical mode cut-
off wavelengths shown in red. (b) TE2 mode cut-off wavelengths for 
a set of waveguides as a function of waveguide widths with varied 
array periods from 250 nm to 700 nm.  (c) Mode cut-off 
wavelengths for 135 nm wide waveguides as a function of array 
period. TM modes: blue curves. TE modes: red curves. 
 
 
 
 
 
 

Supervised Machine Learning Based Spectral Reconstruction: 
Consider 𝑁𝑁 detectors illuminated with an unknown spectrum 
𝑆𝑆(𝜆𝜆). The responsivities of the detectors are known and denoted 
𝑅𝑅𝑖𝑖(𝜆𝜆). The generated photocurrent for the 𝑖𝑖𝑡𝑡ℎ  detector is  
𝑃𝑃𝑖𝑖 = ∫𝑅𝑅𝑖𝑖(𝜆𝜆)𝑆𝑆(𝜆𝜆)𝑑𝑑𝜆𝜆,    𝑖𝑖 ∈ {1,2, … ,𝑁𝑁}    (S1) 
In our spectral reconstruction algorithm, we wish to solve equation 
S1 for 𝑆𝑆(𝜆𝜆). Since our responsivities are measured in a discrete 
fashion (5 nm steps in our case) we must discretize S1 into 𝑀𝑀 
wavelengths. Doing so yields  
𝑃𝑃 = 𝑅𝑅𝑆𝑆                                                 (S2) 
Where 𝑃𝑃 and 𝑆𝑆 are 𝑁𝑁 ×  1 and 𝑀𝑀 ×  1 vectors, respectively, 
and 𝑅𝑅 is an 𝑁𝑁 ×  𝑀𝑀 matrix with element 𝑖𝑖𝑖𝑖 corresponding to the 
𝑖𝑖𝑡𝑡ℎ  detector and 𝑖𝑖𝑡𝑡ℎ  wavelength, 𝜆𝜆𝑗𝑗 . 
Clearly to solve for 𝑆𝑆 by inverting 𝑅𝑅 in this case is only possible 
when 𝑁𝑁 =  𝑀𝑀 and other methods will fail when 𝑁𝑁 < 𝑀𝑀, since 
there are more unknown values than simultaneous equations to 
solve. However, we can apply a transformation matrix, 𝑇𝑇, to 𝑅𝑅 and 
𝑆𝑆 to reduce the number of unknowns in the system. Here following 
Kurokawa et al., we set 𝑇𝑇 to be comprised of a set of Gaussian  
vectors centered on 𝜆𝜆𝑗𝑗   such that 𝑅𝑅𝑟𝑟 = 𝑅𝑅𝑇𝑇 and 𝑆𝑆 = 𝑇𝑇𝑆𝑆𝑟𝑟 , 
where  𝑅𝑅𝑟𝑟  and 𝑆𝑆𝑟𝑟  are the reduced responsivity matrix and 
unknown spectrum vector, respectively. Clearly 𝑇𝑇 must be a 𝑀𝑀 ×
 𝑁𝑁 matrix so that 𝑅𝑅𝑟𝑟  is an 𝑁𝑁 ×  𝑁𝑁 matrix and 𝑆𝑆𝑟𝑟  is a 𝑁𝑁 ×  1 
vector. Equation (S2) then becomes 
                                                                   𝑃𝑃 = 𝑅𝑅𝑟𝑟𝑆𝑆𝑟𝑟                                                 (S3) 
which could be solved for 𝑆𝑆𝑟𝑟  and (mapped back to S, the unknown 
spectrum, using 𝑆𝑆 = 𝑇𝑇𝑆𝑆𝑟𝑟),  with the method of least squares to 
find min

𝑆𝑆𝑟𝑟
||𝑅𝑅𝑟𝑟𝑆𝑆𝑟𝑟 − 𝑃𝑃||22 or perhaps direct inversion if 

𝑑𝑑𝑑𝑑𝑑𝑑(𝑅𝑅𝑟𝑟) ≠  0. In the work presented here we use two sets of 
Gaussian basis vectors to form 𝑇𝑇, with one set used to represent the 
fishnet responsivities and the other set the mesas. We center the 
twenty fishnet Gaussian vectors at wavelengths from 400 nm to 
550 nm, with 5 nm steps and assign an FWHM of 85 nm. For the 20 
mesa vectors, we span a range of 550 nm to 800 nm with 5 nm steps 
and a width of 550 nm. These values roughly correspond to the 
measured responsivity curves but were found via optimization.  
 Since both responsivities and photocurrent measurements will 
contain random observation noise, which for such an ill-
conditioned system will make using the method of least squares 
fruitless, we arrive at the need for Tikhonov regularization (also 
known as weight decay or ridge regression). We find the 
regularization parameter using the L-curve method, and restrict the 
values of 𝑆𝑆𝑟𝑟  to be non-negative since negative spectral values are 
unphysical[2]. Figure S2 shows the measured and reconstructed 
spectrum from a white light LED lamp using this regularization 
technique. Our method is able to identify the correct locations of 
both peaks as well as their relative amplitudes, but the linewidths of 
each feature are incorrect.  
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Figure S2: Measured and Tikhonov regularized reconstructed 
spectrum of the white LED lamp, prior to simulated annealing.  
 
 
To improve the reconstruction further, we implemented a 
simulated annealing step with the regularized output as an initial 
guess. We used the algorithm of Redding et al to achieve improved 
reconstructions[3]. Here we use a linear cooling schedule with an 
initial temperature of 10,500, with a random multiplier between 0.4 
and 1.3 and stop the algorithm either when the system energy, that 
is the difference between the measured photocurrents and 
calculated photocurrents using equation (S2) with our 
reconstructed spectrum, drops below 0.0005 or after 1200 
iterations, when the temperature reaches 0. To improve the 
reliability and reproducibility of the simulated annealing algorithm 
used by Redding et al, we run our algorithm 1000 times and take 
the reconstructed spectrum with the final system energy closest to 
the median final system energy of the 1000 trials.   
 
Fishnet Number: Since our microspectrometer consists of 20 
fishnet pixels with varied waveguide widths and array periods we 
give each pixel a “fishnet number” to identify it. Table S1 gives a 
summary of the width, period and peak responsivity wavelength for 
each fishnet number.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Fishnet 
Number 

Waveguide 
Width (nm) 

Array 
Period 
(nm) 

Wavelength 
(nm) 

1 95 325 400 
2 90 425 405 
3 105 350 410 
4 105 325 410 
5 160 500 420 
6 160 535 420 
7 105 425 420 
8 170 375 430 
9 105 375 455 
10 140 425 460 
11 150 550 460 
12 110 400 490 
13 130 400 485 
14 110 350 480 
15 110 300 495 
16 120 425 520 
17 120 400 510 
18 110 325 530 
19 130 425 505 
20 160 375 465 

 Table S1.  Width, period and responsivity peak wavelength for 
each microspectrometer pixel, identified by fishnet number. 

 
Photodiode Power Dependence and Linearity:  

 
Figure S3: Measured photocurrent generated in fishnet (red 
squares) and mesa (blue) number 8 when illuminated with the LED 
lamp, with varied optical power. The dashed lines are to guide the 
eye. 

 
To verify the current output from both mesa and fishnet detectors 
vary linearly with optical power we measure the photoresponse for 
fishnet pixel number 8. The optical power was increased from 1 μW 
to 5 mW and the photocurrent measured for -1 V (mesa) and +1 V 
(fishnet) bias voltage. Figure S3 shows that for this range of powers 
both mesa and fishnet detectors can be expected to behave linearly.  
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