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1. ELECTRIC FIELD PROFILE AND MODE-MIXING IN A
MICRORING RESONATOR

A. Mode profile in an ideal microring
Due to the small dimensions of our microring geometry, it sup-
ports only fundamental modes within the resonator waveguide
at the wavelengths of our interest. A perfect microring supports
resonator modes of integer azimuthal mode number m, whose
electric field can be written as E±(r, t) = E±(r)e−iωt, where the
spatial field profile in cylindrical coordinates is

E±(r) =
[
Eρ(ρ, z)ρ̂± iEφ(ρ, z)φ̂ + Ez(ρ, z)ẑ

]
e±imφ. (S1)

We additionally require that the mode field satisfies the nor-
malization condition 2ε0

∫
ε(r)|E±(r)|2dr = h̄ω, where ε0 is the

vacuum permittivity and ε(r) is the dielectric function. Here,
Eµ(ρ, z) (µ = ρ, φ, z) are real functions and are independent of φ
due to cylindrical symmetry. We note that the azimuthal field
component is ±π/2 out of phase with respect to the transverse
fields due to strong evanescence field decay and transversality
of the Maxwell’s equation. The perfect resonator modes are trav-
eling waves and the ± sign indicates the direction of circulation.
The mode fields of opposite circulations are complex conjugates
of one another E+(r) = E∗−(r). We can assign a propagation
number k = mφ/l, where l = Rφ is the arc length.

The electric field functions are evaluated using a software em-
ploying a finite element method (COMSOL) [1, 2]. Fig. S1 shows
the electric field components (in cylindrical coordinates) of the
fundamental transverse electric (TE) and transverse magnetic
(TM) resonator modes. The fields are slightly asymmetric across
the center of the waveguide at ρ = ρw due to finite curvature
of the microring (radius R = 16 µm). We also note that the

out-of-phase axial component iEφ is stronger in the TM-mode,
resulting from stronger evanescent field along the ẑ−axis where
the waveguide confinement is strongly subwavelength.

B. Mode mixing in a microring
In the presence of fabrication imperfections, surface scatters
induce radiation loss and mode mixing. The former, together
with other intrinsic loss mechanisms (discussed in [3–5]), in-
duces intrinsic resonator energy loss at a rate κi. The latter effect
can be treated perturbatively, with photons scattered from one
resonator mode into another. Assuming small dielectric irregu-
larities in a high-Q resonator, only counter-propagating modes
with identical azimuthal number can couple via back-scattering
from the surface roughness (at a rate β). In this paper we obtain
this back-scattering rate experimentally.

To understand mode-mixing and its impact on the resonator
mode profiles, we apply well-established coupled mode the-
ory [6] for two counter propagating modes of interest. Using
a−(a+) to denote the amplitude of the clock-wise (CW) and
counter clock-wise (CCW) propagating resonator modes in a
mode-mixed resonator field

E(r, t) = a+(t)E+(r, t) + a−(t)E−(r, t), (S2)

we have the following coupled rate equation

da+
dt

=−
( κ

2
+ i∆ω

)
a+(t) + iβeiξ a−(t)

da−
dt

=−
( κ

2
+ i∆ω

)
a−(t) + iβe−iξ a+(t), (S3)

where ∆ω = ω − ω0 is the frequency detuning from the bare
resonance ω0, β is the coherent back-scattering rate, and ξ is a
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scattering phase shift. The total loss rate κ = κi + κc includes
resonator intrinsic loss rate κi and the loss rate κc from coupling
to the bus waveguide.

Due to the back-scattering terms in Eq. S3 mixing CW and
CCW modes, a new set of normal modes are established whose
rate equations are decoupled from each other and the frequen-
cies of the new modes are shifted by β and −β relative to the
unperturbed resonance, respectively. The electric field of the
mixed mode can be written as Ei(r, t) = Ei(r)e−iωt (i = 1, 2),
where

E1(r) =
[
(Eρ ρ̂ + Ez ẑ) cos(mφ +

ξ

2
)− Eφ sin(mφ +

ξ

2
)φ̂

]
E2(r) =i

[
(Eρ ρ̂ + Ez ẑ) sin(mφ +

ξ

2
) + Eφ cos(mφ +

ξ

2
)φ̂

]
, (S4)

and we have dropped an overall factor
√

2e−i ξ
2 for convenience.

The fields in Eq. S4 should also satisfy the normalization condi-
tion. With the presence of back-scattering, the resonator mode
polarization now becomes linear but is rotating primarily in the
ρ-φ (z-φ) plane for TE (TM) mode along the microring.

C. Atom-photon coupling in a microring resonator
We consider the atom-photon coupling strength

gi = di

√
ω

2h̄ε0Vm
(S5)

where di = 〈e|d|g〉 · ui is the transition dipole moment, ui =
Ei(ρa, za)/|E(ra)|2 is the electric field polarization vector, |E |2 =
|Eρ|2 + |Eφ|2 + |Ez|2, h̄ is the Planck constant divided by 2π, and
Vm(ra) is the effective mode volume at atomic position ra,

Vm(ρa, za) =

∫
ε(ρ, z)|E(ρ, z)|2ρdρdzdφ

ε(ρa, za)|E(ρa, za)|2

=Am(ρa, za)L. (S6)

Here Am follows the definition Eq. 1 in the main text and L =
2πR is the circumference of the microring.

We note that the coupled modes in Eq. S5 can be the CW and
CCW modes, that is i = ±, when gi � β. On the other hand,
if β � gi, an atom should be coupled to a mixed mode with
i = 1, 2. Our microring platform corresponds to the latter case.
We also note that the exact value of the transition dipole moment
di depends on the atomic location and dipole orientation. In the
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Fig. S1. Electric field vector components (Eρ, iEφ, Ez) of (a-c)
the fundamental transverse electric (TE) mode and (d-f) the
transverse magnetic (TM) mode (in arbitrary units). Dashed
lines mark the boundaries of the dielectrics. Radius of the ring
R = ρw = 16 µm.
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Fig. S2. The visibility amplitude factor v(ρ, z) in the intensity
profiles E1(2) of the mixed TE (a) and TM (b) resonator modes,
respectively. Shaded areas mark the microring waveguide.

main text, we simply replace di with the reduced dipole moment

d, where d2 = 3λ3ε0 h̄γ
8π2 , and arrive at

g =

√
3λ3ωγ

16π2Vm
. (S7)

D. Exciting the resonator mode via an external waveguide
If we consider exciting the resonator mode with input power
|s±|2 (actual power Pw normalized with respect to h̄ω) from
either end of the bus waveguide, additional amplitude growth
rate Ks± can be added to the right hand side of Eq. S3; in the
case of a lossless coupler K = i

√
κc. Due to phase matching

conditions between the linear waveguide and the microring,
s+(s−) only couples to the CCW(CW) mode and not to the other
mode of opposite circulation. In the original CCW/CW basis,
the mode amplitudes are

a+ =K
αs+ + iβs−

α2 + β2

a− =K
iβ∗s+ + αs−

α2 + β2 , (S8)

where α = κ
2 + i∆ω. If we now consider exciting the resonator

modes from one side of the bus waveguide, the intra-resonator
field is

E±(r) =
αKs±

α2 + β2

[
E±(r) +

iβe∓iξ

α
E∓(r)

]
, (S9)

The ± sign in Eq. (S9) indicates either |s+| > 0 (and s− = 0) or
|s−| > 0 (and s+ = 0). With back-scattering mixing counter-
propagating modes, the field intensity is a standing wave

|E±(r)|2 = I|E(ρ, z)|2 [1±V(ρ, z) sin(2mφ + ξ±)] , (S10)

where ξ± = ξ± arg(α). The sign flip in the intensity corrugation
is due to the opposite mixtures of the resonator modes being
excited, Eq. (S9), and an overall π/2 phase shift in the back-
scattered mode. We have a frequency-dependent energy build-
up factor

I = I0
|α|2 + β2

|α2 + β2|2 , (S11)

where I0 = κcPw
h̄ω for a lossless coupler and

V(ρ, z) =
2|α|β
|α|2 + β2 v(ρ, z) (S12)

is the visibility of the standing wave; V ≤ v and equality holds
when |α| = β. Here, v = 1− 2|Eφ|2/|E |2 is a visibility amplitude
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factor. The presence of the axial field reduces the visibility of the
standing wave: v vanishes when |Eφ|2 = |E |2/2 and is largest
with |Eφ|2 = 0. As shown in Fig. S2, the visibility of the TE mode
is v ≈ 1 above the microring due to the smallness of the axial
component. On the contrary, for TM-mode a smaller v ≈ 0.2
above the waveguide results from large |Eφ|2 as seen in Fig. S1.

From Eqs. (S10-S12), we can develop schemes to maximize or
minimize standing-wave visibility for evanescent field trapping.
This is discussed in the main text and in the following sections.

2. AC STARK SHIFT IN AN EVANESCENT FIELD TRAP

A. Scalar and vector light shifts in the ground state

When a ground state atom is placed above a microring with a
strong evanescent field that is far-off resonant from the atomic
resonances, it experiences a spatially varying AC stark shift

U(r) = −αµν(ω)Eµ(r)E∗ν(r), (S13)

where αµν is the dynamic polarizability tensor and Eµ = E · êµ

is the vector components of the microring evanescent field. In
the irreducible tensor representation, the above tensor product
can be separated into contributions from scalar (rank-0), vector
(rank-1), and tensor (rank-2) terms

U(r) = Us(r) + Uv(r) + Ut(r), (S14)

where

Us(r) =− α(0)(ω)|E(r)|2 (S15)

Uv(r) =− iα(1)(ω)
E(r)× E∗(r) · F̂

2F
(S16)

Ut(r) =− α(2)(ω)
3

F(2F− 1)
×[

F̂µ F̂ν + F̂ν F̂µ

2
− F̂2

3
δµν

]
EµE∗ν , (S17)

and α(0,1,2)(ω) are the corresponding scalar, vector, and tensor
polarizabilities, F̂ is the total angular momentum operator, and
F is the quantum number. We note that, for ground state atoms
in the S angular momentum state, α(2) = 0. Therefore we do
not consider Ut throughout the discussions. The calculations of
α(0,1) follow those of [7], using transition data summarized in
[8], and is not repeated here. Table S1 lists the value of polariz-
abilities used in the trap calculation.

λ α(0) (a.u.) α(1) (a.u.) α(1)/α(0)

λr 3032.67 25.503 0.0084

λb -2110.81 10.047 -0.0048

Table S1. Cesium 6S1/2, F = 4 ground state dynamic polariz-
abilities at λr = 935.261 nm and λb = 793.515 nm.

B. Scalar and vector light shifts in an evanescent field trap

To form an evanescent field trap, the microring must be ex-
cited through an external waveguide. Equations (S9-S10) can be
used to calculate the single-end excited resonator electric field.
The complex polarization of a mixed resonator mode induces
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Fig. S3. Vector light shift polarization factor fµ(ρ, z) for single-
end excited (a-b) TE and (c-d) TM modes, respectively. Shaded
areas mark the microring waveguide.

both scalar and vector components of the AC Stark shift. Us-
ing E(r) = E±(r) from Eq. (S10), the scalar light shift forms a
standing-wave potential

Us(r) = −α(0)(ω)I|E(ρ, z)|2 [1±V(ρ, z) sin(2mφ + ξ±)] .
(S18)

Meanwhile, the vector light shift depends on the cross product
between the CW and CCW components in the excited field

E±(r)× E±(r)∗ = ∓2iĨEφ(ρ, z)
[
Eρ(ρ, z)ẑ− Ez(ρ, z)ρ̂

]
, (S19)

which is smooth along the microring (independent of φ coordi-
nate) and varies only in the transverse coordinates (ρ, z). Here,
Ĩ is the build up factor for the vector potential

Ĩ = I0
|α|2 − β2

|α2 + β2|2 . (S20)

In a special case when the atomic principal axis lies along the
ẑ-axis, the vector light shift can be explicitly written as

Uv =∓ α(1)(ω)ĨEφ(ρ, z)×[
Eρ(ρ, z)

F̂z

F
− Ez(ρ, z)

(F̂+ + F̂−)
2F

]
, (S21)

where F̂± are the angular momentum ladder operators.
The explicit dependence on angular momentum operators

in Uv reveals a diagonal, state-dependent energy shift and off-
diagonal coupling terms. Near the anti-nodes of a standing wave
Eq. (S10), which should serve as trap centers, the ratio between
the vector and the scalar light shifts is found to be (dropping
F̂-related factors)∣∣∣∣∣Uv

µ

Us

∣∣∣∣∣ ∼ α(1)(ω)

α(0)(ω)
×
Eφ(ρ, z)Eµ(ρ, z)

2|E(ρ, z)|2
Ĩ
I , (S22)

where Uv
µ (µ = ρ, z) represent the amplitudes of the diagonal

and off-diagonal terms in the vector light shift Eq. (S21), respec-
tively.

Equation (S22) suggests that the state dependent vector light
shift can be several orders of magnitude smaller than the scalar
shifts. For far-off-resonant light with frequency ω that is largely
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Fig. S4. Coupling schemes to eliminate the vector light shifts
for microrings with β > κ/2 (a,c) and β < κ/2 (b,d). (a,b) In-
tensity build-up factors I (black curve) and Ĩ (gray curve) for
scalar and vector light shifts, respectively, for κ/2π = 1 GHz,
and β/2π = (a)1 GHz and (b)0.4 GHz; I0 = 105κ2. Vertical
dash (+) and dotted (-) lines in red indicate the frequency de-
tuning of excited modes for zeroing the vector shifts. ± signs
denote the direction of excitation and the insets illustrate the
corresponding coupling schemes. (c,d) Visibility V (red curve)
and phase shifts ξ± − ξ (black and gray curves) in the standing
wave scalar potential Eq. (S18) under the same parameters and
coupling schemes as in (a,b), respectively.

red- or blue-detuned from both cesium D1 and D2 lines, the vec-
tor polarizability α(1)(ω) � α(0)(ω); see Table S1. The electric
field polarization factor

fµ(ρ, z) =
Eφ(ρ, z)Eµ(ρ, z)

2|E(ρ, z)|2 (S23)

provides additional suppression. As shown in Fig. S3, a TE
mode supports an off-diagonal factor fρ ≈ 0 and the diagonal
factor fz ≈ 0.07. For a TM mode, fρ ≈ −0.24 and fz ≈ 0.01. We
expect a single-end coupled evanescent wave potential leads to
|Uv

Us | . 10−3.

C. Eliminating the vector light shifts
In practical experiments, a state-independent trap is much pre-
ferred since it prevents parasitic effects such as dephasing or trap
heating. To fully eliminate the vector shift, a straightforward
method is to choose a proper detuning such that β = |α| (pro-
vided that β > κ/2) and Ĩ = 0, as suggested by Eqs. (S20-S21)
and illustrated in Fig. S4 (a). Visibility V is at the same time
maximized as |α| = β creates equal superposition of CW and
CCW modes up to a relative phase shift, as seen in Eq. S9. The
excited field becomes linearly polarized with spatially rotating
polarization, similar to the form in Eq. S4, and leads to zero
vector shift. In this simple scheme, the scalar light shift build-up
factor is also near its maximal value, as in Fig. S4(a, c).

In cases when β < κ/2, a second option is to excite the res-
onator from both ends of the external waveguide, with one
frequency aligned to the resonance peak I− = Max(I) and an-
other one aligned such that the two excited fields have equal
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Fig. S5. Coupling schemes to eliminate both the vector light
shifts and the standing wave pattern in the scalar potential.
Same curves and parameters as those in Fig. S4 are plotted,
but with different coupling schemes (insets) and frequencies
marked by the vertical dash (+) and dotted (-) lines.

build-up factors Ĩ+ = Ĩ− as shown in Fig. S4 (b). Due to large
relative frequency detuning δ between the two fields, their con-
tributions to the vector light shift, Eq. (S21), are of opposite
signs and can be summed up incoherently to completely cancel
each other. The standing wave pattern in the total scalar shift
[Eq. (S18)], on the other hand, still remains highly visible. For
the example shown in Fig. S4 (b, d), the two excited fields have
unequal intensity buil-up factors, (I+, I−) ≈ (2.6, 1.4) × 103,
visibilities (V+, V−) ≈ (0.93v, 0.69v) and a differential standing-
wave phase shift |ξ+ − ξ−| ≈ 0.49π. The incoherent sum of the
scalar light shifts results in a new visibility

V′ =

√
(I+V+)2 + (I−V−)2 − 2I+I−V+V− cos |ξ+ − ξ−|

(I+ + I−)
,

(S24)
which gives V′ ≈ 0.65v and the standing wave pattern remains
sufficiently strong.

D. Eliminating standing wave in the scalar potential
Modifications in the previous schemes allow further elimination
of the standing wave potential. We make use of the fact that the
standing wave patterns can be created 180 degrees out of phase
with respect to each other when we excite the microring from
either end of the bus waveguide with exact opposite frequency
detuning to the bare resonance ω0, as shown in Fig. S5 for β >
κ/2 (a,c) and β < κ/2 (b,d). Since we also have equal energy
build-up factors and visibilities, (I , Ĩ , V), the standing wave
pattern as well as the vector light shift can be fully cancelled,
allowing us to create a state-independent, smooth evanescent
field potential along the microring that is highly useful in our
two-color trapping scheme.

3. LOSSES IN MICRORING RESONATORS

A. Fundamental limits of the microring platform
Without considering fabrication imperfections, the cooperativity
parameter is fundamentally limited by the intrinsic quality factor
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Qi ∼ 1/(Q−1
a + Q−1

b ) due to finite material absorption (Qa) and
the bending loss (Qb). For stoichiometric LPCVD nitride films, it
has been estimated that the absorption coefficient α� 1 dB/m
in the near infrared range [4]. At cesium D1 and D2 wavelengths,
for example, we estimate that Qa & 108 should contribute little
to the optical loss in a fabricated microring. On the other hand,
we numerically estimate the bending loss from FEM analysis.
We have empirically found that Qb � 108 when the radius
of a microring is beyond 15 micron, as in our case, and the
effective refractive index of the resonator mode is neff > 1.65,
constraining the minimum mode volume to be Vm & 500λ3

for an atom trapped around zt & 75 nm (Vm & 50λ3 for a
solid state emitter at the waveguide surface). Without further
considering fabrication imperfections, the fundamental limit for
the cooperativity parameter could be as high as C ∼ 10−4Qa &
104 (& 105 on the waveguide surface).

B. Surface scattering loss
The analysis of surface scattering loss has been greatly discussed
in the literature, see [3, 9, 10] for example. Here we adopt an
analysis similar to [3], but with a number of modifications. We
evaluate the surface scattering limited quality factor by calculat-
ing

Qss =
ωUc

Pss
, (S25)

where Uc =
1
2 ε0
∫

ε(r)|E(r)|2d3r is the energy stored in the ring,
ε(r) and E(r) are the unperturbed dielectric function and the
resonator mode field, respectively, and Pss is the radiated power
due to surface scattering.

We adopt the volume current method [11] to calculate the
radiation loss. To leading order, the radiation vector potential is
generated by a polarization current density J = −iωδεE created
by the dielectric defects, where δε(r) is the dielectric perturba-
tion function that is non-zero only near the four surfaces of the
microring. In the far field, we have

A =
µ0
4π

e−ik·r

r

∫ [
−iωδε(r′)E(r′)

]
e−ik·r′d3r′. (S26)

The radiation loss can thus be estimated by the time averaged
Poynting vector.

We note that the above method works best for a waveguide
embedded in a uniform medium [11]. In our case, a nitride
waveguide on a dioxide substrate embedded in vacuum, an
accurate calculation is considerably more complicated due to
dielectric discontinuities in the surrounding medium. Here, we
neglect multiple reflections and estimate the amount of scatter-
ing radiation in the far field (in vacuum) by separately evalu-
ating the contributions from the four surfaces of a microring
waveguide. We take δεi = ε0(ε− εi)∆i(r), where ε and εi are
the dielectric constants of nitride and the surrounding dioxide
substrate or vacuum, respectively, and ∆i(r) represents the dis-
tribution function of random irregularities near the i-th surface.
For the side walls at ρ± = R±W/2, surface roughness caused
by etching imperfections; for top and bottom surfaces at z = zt,b,
this results from imperfect film growth.

Using, Eqs. (S26), we could then evaluate

Pss =
∫

ωk
2µ0
|r×A|2dΩ

=
ωk3ε0

32π2 ∑
i,α
(ε− εi)

2Ci,α, (S27)

where

Ci,α =
∫

dΩ
∫ ∫

Eα(r′)E∗α (r′′)e−ik·(r′−r′′)+im(φ′−φ′′)

× (r̂× ê′α) · (r̂× ê′′α )∆i(r
′)∆i(r

′′)d3r′d3r′′. (S28)

The random roughness in the second line of the integral varies
at very small length scale� λ, as suggested by our AFM mea-
surements. Thus, the electric field related terms in the first and
the second lines above can be considered slow-varying. The
integration over large ring surfaces should sample many lo-
cal patches of irregularities, each weighed by similar electric
field value and polarization orientation. We may thus replace
∆i(r′)∆i(r′′) with an ensemble averaged two-point correlation
function 〈∆i(r′)∆i(r′′)〉, which can be determined from the AFM
measurements. We approximate the two-point correlation with
a Gaussian form

〈∆i(r
′)∆i(r

′′)〉 ≈

σ2
i e
− (r′−r′′ )2

L2
i δ(z′ − zi)δ(z′′ − zi)Θ(ρ′)Θ(ρ′′) (S29)

for top and bottom surfaces (i = t, b) and, similarly,

〈∆i(r
′)∆i(r

′′)〉 ≈

σ2
i e
− R2

i (φ
′−φ′′ )2

L2
i δ(ρ′ − ρi)δ(ρ

′′ − ρi)Θ(z′)Θ(z′′) (S30)

for the side walls (i = ±). In the above, σi and Li are the root-
mean-squared roughness and the correlation length, respectively.
δ(x) is the Dirac delta function, and Θ(x) = 1 for x lying within
the range of the (perfect) ring waveguide and Θ(x) = 0 other-
wise.

Plugging Eq. (S29) into Eq. (S28) to evaluate loss contribution
from top and bottom roughness, we obtain

Ci,α ≈ σ2
i

∫ ∫
dρ′dρ′′ρ′2|Eα(ρ

′, zi)|2e
− (ρ′−ρ′′ )2

L2
i Φα(ρ

′), (S31)

where, due to the short correlation length Li � λ, we can sim-
plify the azymuthal part of the integral by taking ρ′′ ≈ ρ′ and
arrive at the following

Φα =
∫

dΩ
∫

dφ′dφ′′(r̂× ê′α) · (r̂× ê′′α )×

eim(φ′−φ′′)e−ik ρ
r ρ′(cos φ′−cos φ′′)e

− ρ′2(φ′−φ′′ )2

L2
i

∼4π5/2η
Li
ρ′

. (S32)

In the above, we used the fact that the integrant is none-
vanishing only when |φ′ − φ′′| . Li/R � 1 and m|φ′ − φ′′| ∼
kLi . 1. Here η = 4

3 is a geometric radiation parameter due
to mode-field polarizations coupled to that of freespace radi-
ation modes [3]; We note that η is polarization independent,
different from the result of [3], because the surface scatterers are
approximately spherically symmetric (σi, Li � λ) in the sense
of radiation at farfield.

Plugging Eq. (S32) into Eq. (S31), we arrive at

Ct(b),α ≈4π5/2σ2
t(b)L2

t(b)RWη|Ēt(b),α|2

=
16
3

π5/2V2
t(b)|Ēt(b),α|2, (S33)
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where |Ēt(b),α|2 = 1
RW
∫ ρ+

ρ−
ρ′|Eα(ρ′, zt(b))|2dρ′ is the averaged

mode field and Vt(b) ≡ σt(b)Lt(b)
√

RW is the effective volume of
the scatterers.

For scattering contributions due to side wall roughness, we
adopt similar procedures and obtain

C±,α ≈
16
3

π5/2V2
±|Ē±,α|2, (S34)

where the effective volume is V± = σ±H
√

L±ρ±, the effective
mode field |Ē±,α|2 = 1

ηH2

∫ 1
−1 |Ẽ±,α(k̃)|2ηα(k̃)dk̃ and Ẽ±,α(k̃) =∫ H

0 Eα(ρ±, z′)e−ikk̃z′dz′. Here, ηα is polarization dependent
due to the geometric shape of the side wall roughness, with
ηρ(φ)(k̃) =

1
2 (1 + k̃2) and ηz = 1− k̃2.

We note that the apparent difference between the mode field
contributions in Eqs. (S33) and (S34) is due to the effective vol-
ume of the surface and side wall scatterers. At the side walls,
because the vertical length of the edge roughness is about the
thickness H of the waveguide and is rather comparable to the
wavelength, interference effect manifests and modifies the scat-
tering contribution from the mode field |Ē±,α|2. If kH � 1,
|Ē±,α|2 ≈ |

∫ H
0 Eα(R±, z′)dz′/H|2 gives the averaged mode field

squared at the side walls.
We then evaluate the scattering-loss quality factor as

Qss =
32π2Uc

k3ε0 ∑i,α ∆ε2
i Ci,α

(S35)

=
3λ3

8π7/2 ∑i,α ∆ε2
i V2

i |ūi,α|2
, (S36)

where ∆εi = ε− εi and define

|ūi,α|2 ≡
|Ēi,α|2∫

ε(r)|E(r)|2d3r
(S37)

≈
|Ēi,α|2

2πR
∫

ε(r)∑α |Eα(ρ, z)|2dρdz
(S38)

as the normalized, weighted mode field energy density.
In the main text we optimize Q/Vm by calculating Q =

1/(Q−1
b + Q−1

ss ). From Eq. (S36) with given roughness param-
eters, it is clear that Qss can be made higher by increasing the
degree of mode confinement, which requires increasing the cross-
section of the microring (H, W) to mitigate the surface scattering
loss. However, this will be constrained by the desire to decrease
the mode volume, that is, to increase the mode field strength
at the atomic trap location |E(ρt, zt)|2. Moreover, the radius
of the microring cannot be reduced indefinitely because of the
increased bending loss and the surface scattering loss at the
sidewall (the guided mode shifts toward the outer edge of the
microring, as shown in Fig. S1). An optimized geometry bal-
ances the requirement for proper mode confinement and small
mode volume to achieve high Q/Vm.

REFERENCES

1. M. Oxborrow, “Traceable 2-d finite-element simulation of
the whispering-gallery modes of axisymmetric electromag-
netic resonators,” IEEE Transactions on Microw. Theory
Tech. 55, 1209–1218 (2007).

2. M. I. Cheema and A. G. Kirk, “Implementation of the per-
fectly matched layer to determine the quality factor of ax-
isymmetric resonators in comsol,” in COMSOL conference,
(2010).

3. M. Borselli, T. J. Johnson, and O. Painter, “Beyond the
rayleigh scattering limit in high-q silicon microdisks: the-
ory and experiment,” Opt. Express 13, 1515–1530 (2005).

4. X. Ji, F. A. S. Barbosa, S. P. Roberts, A. Dutt, J. Cardenas,
Y. Okawachi, A. Bryant, A. L. Gaeta, and M. Lipson, “Ultra-
low-loss on-chip resonators with sub-milliwatt parametric
oscillation threshold,” Optica 4, 619–624 (2017).

5. M. H. P. Pfeiffer, J. Liu, A. S. Raja, T. Morais, B. Ghadiani,
and T. J. Kippenberg, “Ultra-smooth silicon nitride waveg-
uides based on the damascene reflow process: fabrication
and loss origins,” Optica 5, 884–892 (2018).

6. K. Srinivasan and O. Painter, “Mode coupling and cavity–
quantum-dot interactions in a fiber-coupled microdisk cav-
ity,” Phys. Rev. A 75, 023814 (2007).

7. D. Ding, A. Goban, K. Choi, and H. Kimble, “Corrections
to our results for optical nanofiber traps in cesium,” arXiv
preprint arXiv:1212.4941 (2012).

8. F. Le Kien, P. Schneeweiss, and A. Rauschenbeutel, “Dy-
namical polarizability of atoms in arbitrary light fields:
general theory and application to cesium,” The Eur. Phys.
J. D 67, 92 (2013).

9. F. Payne and J. Lacey, “A theoretical analysis of scatter-
ing loss from planar optical waveguides,” Opt. Quantum
Electron. 26, 977–986 (1994).

10. C. G. Poulton, C. Koos, M. Fujii, A. Pfrang, T. Schimmel,
J. Leuthold, and W. Freude, “Radiation modes and rough-
ness loss in high index-contrast waveguides,” IEEE J. se-
lected topics quantum electronics 12, 1306–1321 (2006).

11. M. Kuznetsov, “Radiation loss in dielectric waveguide y-
branch structures,” J. Light. Technol. 3, 674–677 (1985).


	Electric field profile and mode-mixing in a microring resonator
	Mode profile in an ideal microring
	Mode mixing in a microring
	Atom-photon coupling in a microring resonator
	Exciting the resonator mode via an external waveguide

	AC Stark shift in an evanescent field trap
	Scalar and vector light shifts in the ground state
	Scalar and vector light shifts in an evanescent field trap
	Eliminating the vector light shifts
	Eliminating standing wave in the scalar potential

	Losses in microring resonators
	Fundamental limits of the microring platform
	Surface scattering loss


