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This	 document	 provides	 supplementary	 information	 to	 “High-resolution	 3D	 refractive	 index	 microscopy	 of	
multiple-scattering	 samples	 from	 intensity	 images,”	 https://doi.org/10.1364/OPTICA.6.001211.	 We	 first	 show	
3D	refractive-index	reconstruction	of	a	simulated	multiple-scattering	phantom.	We	next	describe	the	experimental	
preparation	 protocols	 used	 to	 prepare	 the	 biological	 samples	 visualized	 in	 the	 main	 text.	 We	 then	 detail	 the	
intuitive	 basis	 for	 the	 overlapping	 circles	 in	 Fourier	 spectra	 that	 occur	 when	 imaging	 a	 weakly	 scattering	
object,	 as	 used	 in	 our	angle-calibration	 step.	 We	 follow	 with	 a	 demonstration	 of	 the	 importance	 of	
regularization	 in	 3D	computational	 reconstruction.	 We	 also	 describe	 the	 procedure	 used	 to	 register	 and	
blend	 together	 individual	reconstructed	volumes-of-interest	to	synthesize	a	final	volume	of	the	whole	C.	elegans	
worm.	 Lastly,	 we	 compare	 the	 reconstruction	 fidelities	 enabled	 by	 the	 multi-slice	 beam	 propagation	
(MSBP)	 method	 with	 those	enabled	 by	 the	 1st	 Born	approximation.	This	comparison	is	conducted	with	the	
samples	 presented	 in	 the	main	text,	to	highlight	that	the	MSBP	method	is	uniquely	suited	for	multiple-scattering	
biological	samples.	

1. Simulated reconstruction
We	demonstrate	 our	 reconstruction	 algorithm	 for	 3D	 refractive	
index	 recovery	 of	 a	 phantom	 simulation.	 The	 phantom	 was	
designed	to	mimic	a	highly-scattering	spherical	cell.	The	phantom’s	
main	body,	nucleus,	central	nucleolus,	and	interspersed	vesicles	had	
refractive	 indices	 of	 1.4,	 1.38,	 1.45,	 and	 1.52,	 respectively.	 The	
surrounding	media	had	refractive	index	of	1.33,	to	mimic	water.	The	
differences	in	refractive	index	within	this	cell	are	sufficiently	large	
so	 that	 the	 cell	 is	 not	 a	 weakly-scattering	 sample	 –	 thus,	
reconstruction	methods	 based	 on	 the	 1st	 Born	 scattering	model	
cannot	be	reliably	used.	
In	Fig.	S1,	we	demonstrate	the	reconstruction	fidelity	obtained	by	

the	multi-slice	beam-propagation	(MSBP)	framework	introduced	in	
the	main	text.	Fig.	S1(a,b)	show	the	true	lateral	(x-y)	and	axial	(x-z)	
cross-sectional	planes	through	the	sample’s	volume,	respectively.	
Fig.	S1(c,d)	shows	the	corresponding	MSBP-reconstructed	lateral	
and	axial	planes.	We	observe	that	both	the	lateral	and	axial	cross-
sectional	 planes	 through	 the	MSBP	 reconstructed	 volume	 show	
excellent	matching	with	 their	 corresponding	planes	 through	 the	
volume	of	the	true	simulated		

Fig.	 S1.	 Simulation	 results	 for	 3D	 spherical	 cell	 phantom.	 (a,c)	
Lateral	and	(b,d)	axial	cross-sectional	planes	through	the	sample	
volume	 are	 shown	 for	 both	 the	 true	 phantom	 and	 the	 result	
reconstructed	via	our	introduced	framework,	respectively.	 
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phantom.	
Because	the	MSBP	reconstruction	protocol	relies	on	a	nonlinear	

and	nonconvex	optimization	framework,	it	is	difficult	to	robustly	
study	its	accuracy	and	precision,	which	will	ultimately	be	partially	
dependent	on	features	within	the	sample	(i.e.,	degrees	of	freedom	
within	the	reconstruction	volume).	However,	 this	demonstration	
shows	 that	 high-fidelity	 3D	 refractive-index	 reconstruction	 is	
possible	and	highly	feasible	in	experimental	settings.		

2. Sample preparation
Preparation of 3T3 fibroblast cells 
NIH	3T3	fibroblast	cells	were	cultured	in	Dulbecco’s	Modified	Eagle	
Medium	(DMEM,	Gibco)	with	10%	fetal	bovine	serum	(FBS;	Life	
Technologies)	 and	 1%	 penicillin/streptomycin	 (P/S;	 Life	
Technologies)	at	37	°C	and	5%	CO2.	For	imaging,	glass	coverslips	
(12mm	diameter,	No.	1	thickness;	Carolina	Biological	Supply	Co.)	
were	 coated	 with	 10µg/mL	 human	 fibronectin	 (Millipore)	 for	
30min	at	37	°C.	NIH	3T3	cells	were	passaged	onto	the	coated	glass	
coverslips,	cultured	for	24hr,	and	fixed	with	3%	paraformaldehyde	
for	20min.	Fixed	cells	were	mounted	in	phosphate	buffered	saline	
(PBS;	Corning	Cellgro)	onto	a	second	glass	coverslip	(24x50mm,	No.	
1	 thickness;	 Fisher	 Scientific)	 and	 immobilized	 with	 sealant	
(Cytoseal	60;	Thermo	Scientific).	

Preparation of C. Elegans worms and embryos 
C.	elegans	embryos	and	worms	were	fixed	with	2%	formaldehyde	
for	1	minute,	followed	by	a	10-minute	freeze	on	dry	ice.	Fisherbrand	
microscope	coverslips	(22X40-1.5)	were	used	to	prepare	the	slides.	
Freeze-cracked	slides	were	washed	with	PBS	buffer	twice.	Then	the	
samples	were	mounted	within	PBS	buffer.	Worms	were	generated	
under	normal	condition	at	20℃.	N2	strain	was	used	in	this	study.	

3. Symmetrically-shifted circles in intensity spectrum
In	the	main	text,	we	note	that	the	Fourier	amplitude	of	an	intensity	
measurement	 of	 a	 single	 scattering	 sample	 under	 angular	
illumination	contains	two	distinct	circles	in	Fourier	space	[1].	These	
two	circles	are	symmetrically	positioned	in	Fourier	space	around	
the	 origin.	 In	 our	work,	 this	 phenomenon	 is	 important	 for	 two	
reasons:	1)	 it	 is	 a	means	 to	algorithmically	 calibrate	an	 imaging	
system	for	its	angular	illuminations,	and	2)	it	enables	qualitative	
inspection	of	how	much	of	a	sample’s	scattering	is	due	to	single-	vs	

multiple-	scattering.	In	this	section,	we	aim	provide	an	intuition	of	
where	these	two	circles	originate	from	as	well	as	the	relationship	of	
their	position	to	illumination	angle. 
In	the	case	of	weak	scattering,	the	image	at	the	camera	plane	is	

formed	predominantly	by	single-scattering	interactions	within	the	
sample.	Thus,	the	image	formation	is	linear	in	electric-field	and	its	
Fourier	spectrum	can	be	described	by	simple	2D	operations.	Given	
a	certain	operating	wavelength	(λ)	and	numerical	aperture	(NA)	for	
the	 imaging	 system,	 the	 pupil	 function	 of	 the	 system	 is	 a	 DC-
centered	circle	with	radius	of	NA/λ	in	Fourier	space.	We	simulate	a	
noise-only	 sample	with	 uniform	 spatial-frequencies,	 denoted	 by	
𝑥(𝒓),	where	𝒓	 is	 the	2D	spatial	vector.	From	Fourier	optics,	 the	
electric-field	 at	 the	 image	 plane	 is	 given	 by	𝑦(𝒓) = ℱ()*𝑝(𝒌 −
𝒌𝟎)	 ∙ ℱ{𝑥(𝒓)}3,	where	𝒌	is	the	2D	spatial-frequency	vector,	 𝒌𝟎 is	
the	2D	wave-vector	for	the	illumination	angle,	𝑝(𝒌)	is	the	system’s	
pupil	function,	and	ℱ{. }	/	ℱ(){. }	are	the	Fourier	/	inverse-Fourier	
operators	 [2].	 The	 Fourier-spectra	 of	 the	 electric-field/intensity	
images	 are	 given	 by	 𝑌(𝒌) = ℱ{𝑦(𝒓)}	 and	 𝐼(𝒌) = ℱ{|𝑦(𝒓)|9},	
respectively.		
In	Fig.	S2	below,	we	show	how	illumination	angle	(described	by		

𝒌𝟎)	affects	the	Fourier	spectra	of	the	image-plane’s	electric	field	and	
intensity,	𝑌(𝒌)	𝑎𝑛𝑑	𝐼(𝒌),	 respectively.	 In	 all	 cases	 where	 the	
illumination	angle	lay	within	the	imaging	system’s	pupil	function,	
𝐼(𝒌)	 demonstrates	 a	 “brightfield”	 region	 in	 Fourier	 space	
composed	of	two	symmetrically	positioned	circular	regions	[1].	The	
center-center	distance	between	these	two	circular	regions	is	set	by	
the	 illumination	 angle,	 2|𝒌𝟎|.	 Furthermore,	 𝐼(𝒌)	 also	 contains	
spatial-frequency	 information	 in	 Fourier	 space	 surrounding	 the	
“brightfield”	 regions.	 The	 visibility	 of	 the	 “brightfield”	 region	
compared	to	the	surrounding	region	is	set	by	the	proportion	of	light	
that	directly	transmits	through	the	sample.		For	example,	in	the	case	
where	the	illumination	angle	lies	outside	the	imaging	system’s	pupil	
function	 (i.e.,	 darkfield	 illumination,	 Fig.	 S2(d)),	 𝐼(𝒌)	 does	 not	
demonstrate	 the	 two-circle	 “brightfield”	 region.	 In	 practice,	
illumination	of	a	weakly-scattering	biological	sample	results	 in	a	
strong	 component	 of	 directly	 transmitted	 light.	 Thus,	 the	
corresponding	𝐼(𝒌)	is	visually	dominated	by	only	the	“brightfield”	
components,	as	evidenced	in	the	main	text	Figs.	1(c,e,g).	However,	
in	 cases	 of	 multiple-scattering	 samples	 where	 the	 directly	
transmitted	 light	 is	not	the	dominant	 imaging	signal,	 the	spatial-
frequency	signal	from	outside	the	“brightfield”	regions	in	Fourier	
space	also	become	apparent.	

Fig.	S2.	Demonstrating	the	relationship	between	the	Fourier	amplitudes	of	the	electric-field	and	intensity	measurements,	respectively,	for	(a)	
on-axis	(	|𝒌𝟎| = 0	),	(b)	off-axis	(	|𝒌𝟎| = 0.5	𝑁𝐴/𝜆	),	(c)	off-axis	(	|𝒌𝟎| = 𝑁𝐴/𝜆	),	and	(d)	darkfield	(	|𝒌𝟎| > 𝑁𝐴/𝜆	)	illuminations.	
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4. Regularization for image reconstruction
In	the	reconstruction	protocol	outlined	in	our	main	text,	we	include	
a	 regularizer	 in	 step	9	 to	 stabilize	 the	nonlinear	and	nonconvex	
iterative	convergence.	Appropriate	use	of	a	regularizer	is	essential	
for	high-fidelity	optimization-based	reconstructions	and	has	 two	
main	 functions:	1)	to	stabilize	the	convergence	of	 the	non-linear	
iterative	solver	in	the	presence	of	data	noise.	Noise,	if	unaccounted	
for,	can	cause	overfitting	in	the	iterative	solver	and	lead	to	severe	
degradations	 in	 the	 reconstruction.	 2)	 To	 enable	 good	
reconstruction	 in	 the	 case	of	 poor	 conditioning.	Being	 robust	 to	
poorly	 conditioned	 formulations	 is	 an	 important	 consideration	
because	it	is	physically	unfeasible	to	collect	as	many	acquisitions	as	
there	 are	 unknown	 variables	 in	 the	 reconstruction	 volume	 (i.e.,	
voxels).	 As	 a	 benchmark,	 our	 input	 datasets	 for	 the	 3D	
reconstructions	presented	in	the	main	text	contained	~4	times	less	
data	than	the	final	3D	refractive-index	reconstructions.   
Hence,	 due	 to	 data	 noise	 and	 poor	 conditioning,	 the	 iterative	

solver	traverses	through	a	highly	under-determined	system	with	

Fig.	S3.	Effects	of	regularization	on	image	reconstruction	fidelity.	
Lateral	and	axial	cross-sectional	planes	 from	a	3D	reconstructed	
volume	of	the	3T3	cell	sample	are	shown	after	undergoing	(a,b)	
over-regularization,	 (c,d)	 sufficient	 regularization,	 (e,f)	 and	 no	
regularization,	respectively.		

several	 local	 minima	 –	 the	 regularizer	 helps	 guide	 the	 solver	
towards	a	solution	that	satisfies	some	prior	assumption.	Our	choice	
of	 using	 a	 3D	 total-variation	 regularizer	 is	 appropriate	 	 in	
applications	where	the	sample	is	assumed	to	be	slowly-varying	(or	
piece-wise	constant)	and	where	high-variation	is	attributed	to	noise	
[3].		

However,	careful	consideration	must	be	taken	to	not	apply	the	
regularizer	 too	 heavily.	 Doing	 so	 will	 enforce	 the	 regularizer’s	
assumption	 too	 strongly	 and	 will	 lead	 to	 an	 overly	 biased	
reconstruction.	 Hence,	 the	 strength	 of	 the	 regularizer	 is	 often	
manually	tuned	to	optimize	reconstruction	quality.	In	Fig.	S3,	we	
show	lateral	and	axial	cross-sectional	planes	from	reconstruction	
volumes	 of	 the	 3T3	 fibroblast	 cell,	 obtained	 with	 over-
regularization	 (Fig.	 S3(a,b)),	 proper	 regularization	 (Fig.	 S3(c,d)),	
and	no	regularization	(Fig.	S3(e,f)),	respectively.	We	observe	large	
high-contrast	 fringe	 artifacts	 corrupting	 the	 3D	 reconstruction	
obtained	by	 implementing	no	regularizer	 (indicated	with	yellow	
arrows	in	Fig.	S3(e,f)).	In	contrast,	excessive	regularization	overly	
biases	the	reconstruction	against	sample	variation,	and	leads	to	a	
significant	blurring-out	of	many	of	the	fine	details	 in	the	sample.	
Proper	 application	 of	 regularization,	 however,	 yields	 a	
reconstruction	 that	 retains	 sharp	 sample	 features	 and	 avoids	
unwanted	artifacts.	

5. Total-volume synthesis from individual 3D
reconstructed volumes within C. elegans worm
In	the	main	text,	we	demonstrated	3D	reconstruction	of	a	whole	C.	
elegans	worm.	Because	the	worm	had	a	physical	length	greater	than	
1	mm,	it	could	not	be	fully	visualized	within	the	imaging	objective’s	
FOV	(~180	um	diameter)	–	hence,	we	reconstruct	3D	RI	within	a	
smaller	volume-of-interest	(VOI)	at	a	time.	Multiple	VOIs	spanning	
the	whole	worm	were	reconstructed	by	physically	translating	the	
worm.	Here,	we	 describe	 the	 procedure	 used	 to	 stitch	 together	
these	separate	VOIs	into	a	complete	3D	reconstruction	of	the	whole	
worm.	
Fourteen	VOIs	were	required	to	span	the	whole	C.	elegans	worm.	

Each	individual	VOI	had	dimensions	1200⨯1200⨯100	voxels,	and	
had	overlap	with	adjacent	VOIs.	The	final	synthesized	RI	volume	of	
the	 whole	 worm	 had	 1914⨯10408⨯118	 voxels	 (2.3	 total	
Gigavoxels).	 Fig.	 S4	 illustrates	 the	 synthesis	 process	 of	 two	
individual	volumes-of-interest	(VOIs).	This	process	is	repeated	for	
each	 subsequent	 VOI	 to	 synthesize	 together	 the	 final	 3D	
reconstruction	of	the	whole	C.	elegans	worm,	shown	in	the	main	text	
Fig.	5.		
Fig.	S4(a)	shows	the	center	depth	slice	from	the	first	and	second	

VOI.	VOI1	captures	the	head	of	the	worm	and	VOI2	captures	the	
start	of	the	worm’s	intestinal	tract,	with	overlap	(in	this	case,	the	
overlap	covers	the	worm’s	pharynx	bulb).	Standard	3D	rigid-body	
registration	algorithms		[4]	can	identify	this	overlap	and	find	the	3D	
translational	difference	between	VOI1	and	VOI2	(Fig.	S4(b)).	This	
translational	difference	was	used	to	zero-pad	both	VOI1	and	VOI2	
to	 position	 them	 properly	 with	 respect	 to	 each	 other,	 within	 a	
greater	synthesized	volume.	We	designate	the	padded	versions	of	
VOI1	and	VOI2	as	VOIp1	and	VOIp2	(Fig.	S4(b)).		At	this	point,	VOIp1	
and	VOIp2	could	in	theory	be	simply	averaged	over	the	non-zero	
values	to	generate	the	synthesized	volume	–	however,	in	practice,	
such	 averaging	 leads	 to	 edge-artifacts,	 as	 indicated	 by	 yellow	
arrows	in	Fig.	S4(f).		
To	avoid	such	artifacts,	we	adopt	a	weighted-average	scheme	for	

combining	VOIp1	and	VOIp2.	We	first	generate	3D	masks	for	VOIp1	
and	VOIp2,	designated	as	VOIm1	and	VOIm2,	respectively.	These	
masks	were	initialized	with	values	1	in	locations	of	all	non-zero		
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Fig.	S4.	Outline	of	how	two	reconstructed	refractive	index	(RI)	volume	patches	are	stitched	together	to	form	a	larger	RI	volume.	(a)	Start	with	
two	adjacent	volumes-of-interest	(VOIs)	that	overlap	to	contain	a	set	of	the	same	sample	features.	(b)	3D	rigid-body	registration	algorithms	
can	identify	the	region	of	overlap	to	subsequently	calculate	the	translational	difference	between	VOI1and	VOI2.		(c)	Appropriate	zero-padding	
positions	VOI1	and	VOI2	properly	with	respect	to	each	other,	in	a	larger	volume	space.	(d)	3D	weighting	masks	are	generated.	The	values	
within	the	overlap	region	(identified	in	(b))	are	set	via	weighted-average.	(e)	Multiplication	of	the	zero-padded	VOIs	and	the	weighted	masks	
results	in	the	weighted	VOIs.	(f)	Standard	averaging	across	the	zero-padded	VOIs	results	in	a	synthesized	volume	with	edge	artifacts	(indicated	
with	yellow	arrows).	(g)	However,	simple	addition	across	the	weighted	VOIs	results	in	a	synthesize	volume	with	no	apparent	edge	artifacts.

values	in	VOIp1	and	VOIp2,	and	zero	elsewhere.	Afterwards,	the	
values	of	the	masks	within	the	overlap-region	between	VOI1	and	
VOI2,	as	identified	earlier,	were	replaced	by	a	normalized	weighted	
average.	 This	 weighted	 average	 was	 calculated	 based	 on	 the	
distance	 of	 each	 point	 to	 the	 closest	 edge	 of	 the	 overlap-region	
consisting	of	all	ones	Fig.	S4(d).	This	weighted	average	protocol	is	
similar	to	what	is	often	used	in	standard	alpha-blending	algorithms	
[5].		Afterwards,	VOIp1	and	VOIp2	were	multiplied	by	VOIm1	and	
VOIm2,	 to	 result	 in	 the	 weighted	 VOIs,	 VOIw1	 and	 VOIw2,	
respectively	(Fig.	S4(e)).	A	simple	addition	then	results	in	the	fully	
synthesized	 volume	 merging	 VOI1	 and	 VOI2	 (Fig.	 S4(g)).	 After	
comparing	Fig.	S4(f,g),	we	see	that	the	weighted	average	protocol	
for	volume	synthesis	appropriately	avoids	the	edge	artifacts	that	
plague	the	volume	synthesis	via	direct	averaging.		

6. Reconstruction comparison between 1st Born and
multi-slice scattering models
Applying	the	1st	Born	scattering	assumption	when	reconstructing	a	
sample’s	3D	refractive	index	(RI)	is	a	popular	strategy	employed	by	
many	diffraction	tomography	techniques	[6].	However,	though	this	
assumption	is	valid	for	weakly-scattering	samples,	many	biological	
samples	 are	 multiple	 scattering	 and	 cannot	 be	 optically	
characterized	 by	 1st	 Born	 scattering.	 In	 the	 main	 text,	 we	
investigated	the	multi-slice	beam	propagation	(MSBP)	model	 for	
the	robust	3D	RI	reconstruction	of	weakly-scattering	and	multiple	
scattering	biological	samples.	In	Fig.	S5,	we	compare	these
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Fig.	S5.	3D	RI	reconstruction	fidelity	comparing	1st	Born	with	multi-slice	beam	propagation	(MSBP)	models.	(a,b,c)	Example	raw	acquisitions	
and	(d,e,f)	associated	Fourier	spectra	from	the	datasets	collected	of	the	3T3	fibroblast	cell,	C.	elegans	embryo,	and	C.	elegans	worm	head,	
respectively.	Samples	with	more	multiple	scattering	have	more	energy	outside	the	two	circles	defined	by	the	illumination	angle	and	NA.	(g,h,i)	
The	center	cross-sectional	plane	of	the	3D	RI	volumes	of	each	reconstructed	sample		using	the	1st	Born	model,	as	compared	to	(j,k,l)	the	multi-
slice	MSBP	scattering	model.	Multi-slice	accounts	for	multiple	scattering,	resulting	in	higher-quality	RI	reconstructions	that	better	capture	the	
low-frequency	variations.	

reconstructions	with	those	obtained	via	the	intensity-based	1st	Born	
scattering	inversion	model	[7].	We	note	that	both	models	use	the	
same	raw	data	set	–	the	difference	between	the	reconstructions	is	
due	purely	to	which	computational	model	was	used.	
In	Fig.	S5(a,b,c),	we	show	an	individual	raw	acquisition	from	the	

datasets	acquired	of	the	3T3	fibroblast	cell,	C.	elegans	embryo,	and	

C.	elegans	whole	worm	samples,	 respectively.	Fig.	S5(d,e,f)	show	
their	corresponding	Fourier	spectra.	Recall	that	the	3T3	fibroblast	
cell	is	a	weakly-scattering	sample.	This	is	confirmed	by	its	Fourier	
spectra,	 which	 clearly	 demonstrates	 two	 “brightfield”	 circles	
symmetrically	positioned	in	Fourier	space.	The	C.	elegans	embryo	is	
a	multiple-scattering	 sample.	This	 is	 also	 reflected	 in	 its	 Fourier	
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spectrum,	which	demonstrates	significant	signal	outside	the	two-
circle	 “brightfield”	 region	 (as	 indicated	 by	 yellow	 arrows	 in	 Fig.	
S5(e)).	 Finally,	 the	C.	 elegans	worm	 is	 also	 a	multiple-scattering	
sample.	Interestingly,	its	Fourier	spectra	shows	virtually	no	distinct	
“brightfield”	signal.	This	signifies	that	the	C.	elegans	worm	is	an	even	
stronger	multiple-scattering	sample	than	the	C.	elegans	embryo.	
Fig.	 S5(g,h,i)	 and	 Fig.	 S5(j,k,l)	 show	 the	 lateral	 cross-section	

through	the	center	of	the	3D	RI	volumes	of	the	three	samples,	as	
reconstructed	 using	 the	 1st	 Born	 and	 MSBP	 inversion	 models.	
Because	the	3T3	fibroblast	cell	is	a	weakly-scattering	sample,	we	
expect	 the	 1st	 Born	 assumption	 to	 be	 valid	 and	 to	 enable	 high-
fidelity	 reconstruction.	 As	 expected,	 the	 reconstructed	 RI	 via	 1st	
Born	and	MSBP	match	well	(Fig.	S5(g,j)).	In	the	case	of	the	multiple-
scattering	 C.	 elegans	 embryo	 and	 worm	 samples,	 however,	 the	
reconstructions	via	the	1st	Born	(Fig.	S5(h,i))	and	MSBP	Fig.	S5(k,l))	
scattering	models	show	distinct	and	 fundamental	differences.	1st	
Born	demonstrates	an	 inability	 to	 reconstruct	 the	 lower	spatial-
frequencies	in	the	presence	of	multiple-scattering,	and	essentially	
high-pass	filters	the	RI	content.	This	observation	has	been	affirmed	
by	previous	works	as	well	[8].	The	degree	of	high-pass	filtering	is	
dependent	on	the	degree	of	multiple-scattering	within	the	sample,	
and	the	1st	Born	RI	reconstruction	of	the	C.	elegans	worm	(Fig.	S5(i))	
shows	greater	high-pass	filtering	than	in	that	of	the	embryo	(Fig.	
S5(h)).	In	both	cases,	important	biological	features	that	are	easily	
visualized	in	the	MSBP	reconstruction,	such	as	the	individual	cells	
within	 the	 embryo	 and	 the	 pharynx	 muscles	 and	 buccal	 cavity	
within	 the	 worm’s	 head,	 cannot	 be	 visualized	 in	 the	 1st	 Born	
reconstructions.		
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