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This document provides supplementary information to “On-chip χ(2) microring optical para-
metric oscillator,” https://doi.org/10.1364/OPTICA.6.001361. A detailed derivation of the optical 
parametric oscillation threshold and output power is presented following from the main text. A 
brief overview of the OPO power and conversion efficiency previously derived from input-
output theory is also provided for the reader’s convenience. Finally, details of the OPO 
measurement setup as well as the delayed self-heterodyne linewidth measurement are 
presented.

1. DETAILED DERIVATION OF THE OPO THRESHOLD

As previously derived in Ref .[1], the Hamiltonian for degenerate
down-conversion and SHG is

H/h̄ = ωaa†a + ωbb†b + g0b(a†)2 + g0b†(a)2, (S1)

for mode a at 1550 nm and mode b at 775 nm oscillating at ωa
and ωb, respectively. We then introduce a strong pump around
mode b with the angular frequency ωp and the pump photon
number

β =

√
2κb,1

−i(ωb −ωp)− κb

√
Pp

h̄ωp
(S2)

where κb = κb,0 + κb,1 is the total amplitude decay rate of mode
b given by intrinsic loss rate κb,0 and external coupling loss
κb,1 and is related to optical Q by κb = ωb

2Qb
. Applying a mean

field approximation in the rotating frame of ωa, the effective
Hamiltonian from Eq. (S1) of the probe field a is reduced to

He f f /h̄ = δaa†a + g0β((a†)2 + a2) (S3)

where δa = ωa − ωp/2 represents the detuning of the signal
(idler) mode frequency from the downconverted pump fre-
quency.

Due to the coupling ports and intrinsic losses, we write the

system Langevin equations as

d
dt

a = (−iδa − κa)a− ig0βa† − i
√

2κa,0ain − i
√

2κa,1ain (S4)

d
dt

a† = (iδa − κa)a† − ig0βa + i
√

2κa,0a†
in + i

√
2κa,1a†

in (S5)

where ain and a†
in refer to the input at mode a due to vacuum

noise. Introducing the Fourier Transform of operators

O(ω) =
∫

dtO(t)eiωt, (S6)

O†(−ω) =
∫

dtO†(t)eiωt, (S7)

we obtain

−iωa=(−iδa − κa)a− ig0βa† − i
√

2κa,0ain − i
√

2κa,1ain, (S8)

−iωa† = (iδa − κa)a† + ig0βa + i
√

2κa,0a†
in + i

√
2κa,1a†

in, (S9)

where the o† terms correspond to the −ω frequency.
The cavity field is then solved as

a =
−χ′a(−i

√
2κa,0ain − i

√
2κa,1ain)− ic(i

√
2κa,0a†

in + i
√

2κa,1a†
in)

χaχ′a − |c2|
(S10)
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where

c =
g0β

κa
, (S11)

χa =
−i(δa −ω)

κa
− 1, (S12)

χ′a =
−i(δa + ω)

κa
− 1. (S13)

The top term in Eq. (S10) refers to the input from vacuum noise
and is particularly important for spontaneous parametric down-
conversion experiments such as Ref. [1]. For the OPO case how-
ever, we have oscillation at a without external laser input, giving
the expression

χaχ′a − |c2| ≈ 0, (S14)

yeilding the threshold condition

g2
0β2 = κ2

a , (S15)

shown in Eq. (4) in the main text. Expanding out terms and
assuming critical coupling as well as the pump on resonance
(ωp = ωb) we obtain

Pth =
h̄ωb

g2
0

κ2
a,0κb,0 =

h̄ω4
b

32g2
0

1
Q2

a,0Qb,0
. (S16)

2. OPO POWER ABOVE THRESHOLD

A. Degenerate OPO
In the previous section, we made the non-depletion approxi-
mation for for OPO below threshold. When the pump exceeds
the threshold, however, |a|∗ will be amplified until saturation.
Here, we solve the OPO output power without the backaction
approximation, but neglect the quantum noise.

From Eq. (S1), we have

ȧ = (−iδa − κa)a− i2g0ba∗ (S17)

ḃ = (−iδb − κb)b− ig0a2 − i
√

2κb1bin (S18)

where the input has frequency ωp, the pump detuning is given

by δb = ωb −ωp, and bin =

√
Pp

h̄ωp
is the input photon number

at mode b from the pump. In the steady state of OPO above
threshold, we have

ȧ = 0 (S19)

ḃ = 0 (S20)

such that

a =
i2g0b
−iδa − κa

a∗. (S21)

Let a = |a|eiθ , then b = −iδa−κa
i2g0

ei2θ . Substituting it into
Eq. S18, we have

(−iδa − κa)(−iδb − κb)

i2g0
ei2θ − ig0|a|2ei2θ − i

√
2κb,1bin = 0

(S22)
such that

(−iδa − κa)(−iδb − κb)

2g2
0

+ |a|2 +
√

2κb1
g0

e−i2θbin = 0. (S23)

If the real and imaginary parts of Eq. (S23) both vanish in the
steady state, then

iδaκb + iδbκa

2g2
0

− i
√

2κb1
g0

sin(2θ)bin = 0, (S24)

sin(2θ) =
δaκb + δbκa

2g0
√

2κb1bin
, (S25)

and

κaκb − δaδb

2g2
0

+ |a|2 +
√

2κb1
g0

bin cos(2θ) = 0 (S26)

|a|2 =

√
2κb1
g0

bin

√
1−

( δaκb + δbκa

2g0
√

2κb1bin

)2
− κaκbδaδb

2g2
0

. (S27)

Equation (S27) only has a solution when the right hand side is
greater than zero. For the ideal case of δa = δb = 0, then

|a|2 =

√
2κb1
g0

bin −
κaκb

2g2
0

. (S28)

We note that the above equation can be used to verify the OPO
threshold when

√
2κb1bin ≥ κaκb

2g0
in the form

√
2κb1

√
Pth
h̄ωb

=
κaκb
2g0

, (S29)

then we obtain the threshold

Pth =
κ2

aκ2
b

8κb1g2
0

h̄ωb. (S30)

If we define the single-photon cooperativity as

C0 =
g2

0
κaκb

=
1

Pth
h̄ωb

8κb1
κb

1
κa

, (S31)

Eq. (S28) can be re-written as

|a|2 =
1

2C0
(
√

Pb/Pth − 1). (S32)

Therefore, the IR OPO output is

Ps+i = 2κa1h̄ωa|a|2 (S33)

= 2κa1h̄ωa
Pth
h̄ωb

4κb1
κb

1
κa

(
√

Pb/Pth− 1) (S34)

= 4
κa1
κa

κb1
κb

Pth(
√

Pb/Pth − 1). (S35)

B. Non-degenerate OPO
The total Hamiltonian for non-degenerate downconversion and
DFG can be written as [1]

H/h̄ = ωaa†a + ωcc†c + ωbb†b + 2g0bc†a† + 2g0b†ca

+
√

2κb1(b
†bine−iωpt + b†

ineiωptb),
(S36)

by accounting that three-wave mixing coupling strength in the
non-degenerate case is twice that of the degenerate case. Here,
modes a and c near 1550 nm and mode b at 775 nm oscillating at
ωa, ωc, and ωb, respectively. Assuming all modes on resonance
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and phase-matching such that ωa + ωc = ωb and ωb = ωp, we
find the steady-state relations

ȧ = −κaa− i2g0bc∗ = 0, (S37)

ċ = −κcc− i2g0ba∗ = 0, (S38)

ḃ = −κbb− i2g0ac− i
√

2κb1bin = 0, (S39)

yielding

κaa = −i2g0bc∗, (S40)

κcc = −i2g0b
ig0b∗

κa
c, (S41)

κaκcac = −4g2
0b2a∗c∗, (S42)

from which we may note |b|2 = κaκc
4g2

0
.

Setting the real part of Eq. (S42) to zero, we find

κaa(i2g0ba∗) = κcc(i2g0bc∗), (S43)

κa|a|2 = κc|c|2. (S44)

Similarly, for the imaginary part of Eq. (S42), we find

±iκb

√
κaκc

4g2
0
− i2g0

−i2g0
κa
|c|2(±i

κaκc

4g2
0
)− i

√
2κb1bin = 0, (S45)

−4g2
0

κa
|c|2 = κb −

√
2κb1bin2g0

κaκc
, (S46)

|c|2 =

√
2κb1

2g0
√

κc/κa
bin −

κaκb

4g2
0

. (S47)

From the above relations, we can verify the non-degenerate
OPO threshold, noting that Eq. (S47) only has a solution when
the right hand side is greater than zero, yielding

√
2κb1

2g0
√

κc/κa

√
Pth
h̄ωb

=
κaκb

4g2
0

, (S48)

Pth =
κaκcκ2

b
8g2

0κb1
h̄ωb, (S49)

which is equivalent to that derived above.
Defining the single-photon cooperativity for modes a and c

as

C0,ac =
g2

0
κa,cκb

=
1

Pth
h̄ωb

8κb1
κb

1
κa,c

(S50)

we may re-write Eq. (S47) as

|c|2 =
1

4C0,ac
(
√

Pb/Pth − 1) (S51)

for mode c and similarly

|a|2 =
1

4C0,ac
(
√

Pb/Pth − 1) (S52)

for mode a.
We then solve the steady-state OPO output power as

Ps+i = 2κa1|a|2h̄ωa + 2κc1|c|2h̄ωc (S53)

≈
(2κa1

κa
+

2κc1
κc

) h̄ωb
2

κaκcκb

4g2
0

(
√

Pb/Pth − 1) (S54)

≈
(2κa1

κa
+

2κc1
κc

) κb1
κb

Pth(
√

Pb/Pth − 1). (S55)

If we assume that modes a and c are sufficiently close such
that ωc ≈ ωc, κc ≈ κa, and κc1 ≈ κa1, then Eq. S55 simplifies to

Ps+i ≈ 4
κa1
κa

κb1
κb

Pth(
√

Pb/Pth − 1). (S56)

When we have critical coupling for both visible and telecom
bands,

Ps+i ≈ Pth(
√

Pb/Pth − 1). (S57)

C. Discussion
From the Eqs. (S35) and (S55), we have the energy conversion
efficiency

ηs+i = 4
κa1
κa

κb1
κb

(
√

Pth/Pb − Pth/Pb). (S58)

This equation has a few notable features. First, we note that
the energy conversion efficiency ηs+i scales roughly as

√
Pb/Pth;

unlike in the SHG case the OPO efficiency cannot be increased
by increasing the pump power to saturation. Instead, Eq. (S58)
has a maximum specifically at Pb = 4Pth. Second, we find that
by inserting Pb = 4Pth in to Eq. (S58) we achieve a maximum
efficiency of 25% in the critically coupled case. Finally, this max-
imum efficiency is determined by the extraction factors κa,1

κa
and

κb,1
κb

in Eqs. (S35) and (S55); ηs+i,max is increased and decreased
by over- and undercoupling, respectively. This finding is of fun-
damental importance to designing an OPO laser. We note that
over-coupling helps to increase the OPO efficiency, however un-
dercoupling is usually preferable to decrease the OPO threshold.
The design of an OPO laser must balance these competing goals;
a high conversion effciency suffers from a high OPO threshold,
and vice-versa.

3. COMPARISON TO INPUT-OUTPUT THEORY

The reader is also encouraged to refer to Refs. [2, 3] for a thor-
ough derivation of the OPO threshold, OPO power, and conver-
sion efficiency from input-output theory. Here, we will summa-
rize the equations used therein to establish their equivalence to
those derived above.

A. OPO Threshold

Using the formalism defined in Ref. [1], the term g2
0 can be

expanded as

g2
0 =

h̄ω3
b χ(2)2

8πε0Rn6
eff

ξ2 (S59)

where neff is the effective index of the phase matched pump,
signal, and idler modes, and ξ is the effective mode overlap
factor. The expanded form of g0 is then inserted into Eq. (S16) to
find

Pth =
ωbπε0n6

eff

4χ(2)2
1

Q2
aQb

R
ξ2 . (S60)

After relating R/ξ2 to effective mode volume Veff, Eq. (S60) can
be related to the expression derived in Ref. [3]

Pth =
πνbε0n6

e f f

16d2
1

Q2
aQb

Ve f f . (S61)

An examination of these equations yields useful scaling relations
of the OPO threshold. Notably, the threshold decreases when
moving to longer pump wavelengths, reducing the optical loss
(particularly at the signal/idler wavelengths), or using a material
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with a large χ(2) value. The threshold increases with larger mode
volume and/or poor mode overlap; our AlN microresonators
are able to achieve OPO lasing with relatively small optical Q
factors compared to bulk resonators due to their significantly
reduced mode volume and high mode overlap.

B. OPO Power and Efficiency
We begin by adopting the conventions from Ref. [3], introducing
the coupling parameter r = Q0/Q1 such that r < 1 represents
undercoupling, r > 1 represents overcoupling, and r = 1 is the
critically-coupled case. The generated signal power is derived
as

Ps = 4(
√

Pb/Pth − 1)Pth
λb

λs(r−1
b + 1)2(r−1

si + 1)2
(S62)

=
2
R
(
√

Pb/Pth − 1)Pth (S63)

and similarly for the idler. Assuming λs ≈ λb/2 for simplicity.
The total signal and idler power is simply twice this quantity,
then

Ps+i =
16

(r−1
b + 1)2(r−1

si + 1)2
Pth(

√
Pp/Pth − 1). (S64)

When we have critical coupling for both visible and telecom
bands,

Ps+i ≈ Pth(
√

Pb/Pth − 1), (S65)

which agrees with the derivations in previous section.

4. OPO MEASUREMENT SETUP

The data presented in Fig. 3(a-b) in the main text was collected
using the setup shown in Fig. S1. The pump light used to excite
the OPO is sourced by a Ti:Sapphire laser (M2 SolsTiS, 700−1000
nm) and a variable neutral density filter (ND) is employed to
adjust the input power delivered to the chip. The polarization of
the incident light is then selected for the TM mode by a half-wave
plate (λ/2) before it is focused onto the AlN waveguide via an as-
pheric lens (L1). The AlN chip is placed upon an external heater
for fine tuning the temperature to the dually-resonant condition.
Since the extracted signal and idler photons in the waveguide
mainly propagate towards the input facet (solid arrows in Fig.
S1), a dichroic mirror (M1, Thorlabs DMSP950T) is placed in
front of the aspheric lens to reflect the backward-traveling in-
frared OPO light into an integrating sphere detector (Thorlabs
S144C, PD1). The transmitted visible and scattered infrared light
is then collected by a lensed fiber (LF) and then separated via an
off-chip wavelength division multiplexer (WDM). The visible
light is collected into a photodetector for monitoring the trans-
mission while the scattered infrared light is diverted towards
an optical spectrum analyzer (AQ 6315E) and a high-sensitivity
infrared photodetector (PD2).

5. SELF-HETERODYNE LINEWIDTH MEASUREMENT

Several experimental techniques exist to measure the linewidth
of a narrowband laser and are usually cross-correlation (involv-
ing an auxillary laser) or autocorrelation (no auxillary laser).
Examples of the former case include heterodyne spectroscopy,
where the auxillary laser is swept over the probe laser, and het-
erodyne beating, where the auxillary laser beats with the probe
laser and the linewidth of the resulting beat note is measured
in the RF domain [4]. Such measurement schemes are relatively

AlN Chip

WDM

OSA

LF

Vis PD IR
 PD

2

λ/2Ti:Sapph ND

IR PD1

M1 L1

Fig. S1. Schematic of the experimental set-up for OPO charac-
terization. Note that the OPO light in the waveguide (upper
solid arrows) mainly propagates towards the input facet while
approximately 10% (upper dashed arrows) is scattered to-
wards the output chip facet due to residual waveguide rough-
ness and/or scattering from the bus waveguides. Descriptions
of each component are given in the text.

simple to implement, however the retrieved linewidth is ulti-
mately limited by the linewdith of the auxillary laser.

Here we apply an autocorrelation technique – the self-
heterodyne scheme, where a laser is split and one portion is
delayed (usually by an optical fiber) and then re-combined with
the original beam in a Mach-Zhender interfometer scheme [5].
The reference (non-delayed) arm is typically frequency shifted
by an acousto-optic modulator (AOM) to a covenient frequency
in the RF domain; a beat note will arise at the AOM drive fre-
quency if the recombined beams retain sufficient coherence after
delay in the optical fiber. The laser linewidth can be directly
retrieved from the linewidth of the RF beatnote, however this
technique is known to be particularly sensitive to intrinsic laser
noise such as 1/ f and flicker noise [6].

OSAAOMTBPF

PD ESA
10 km

a) b)

c) d)

Fig. S2. (a) Experimental setup for laser linewidth measure-
ment. Details on each component are given in the main text.
(b) Retrieved RF beatnote from the self-heterdyne measure-
ment in the degenerate lasing case. A gaussian fit (dashed
black line) is applied to the spectrum to retrieve the linewidth.
RF beat notes of the (c) signal and (d) idler are also retrieved
and a gaussian fit is applied as before.

The experimental setup used to assess the laser linewidth is
shown in Fig. S2(a). The setup is identical to Fig. S1, except
that we have replaced PD1 with an infrared collimator to collect
the OPO light into a fiber. The light is then sent to an optical
tunable bandpass filter (TBPF) set for either the signal, idler, or
degenerate wavelengths to remove other spectral components
from the measurement. The light is then split into two branches.
One branch is sent to a 10.56 km fiber delay line, while the
reference arm is sent to an AOM (Gooch & Housego Fiber-Q)
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driven at 195 MHz. The two signals then recombine and interfere
on a photodetector (New Focus 1611) and the resulting beat
note is aquired on an electrical spectrum analyzer (ESA, Signal
Hound USB-SA124B). We also monitor the filtered laser line on
an OSA to ensure filter alignment during the measurement. All
split ratios are approximately 50:50. We choose a fiber length of
10.56 km as it is longer than the coherence length of the pump
laser which is specified as <50 kHz, or 2.3 km SMF at 1550 nm.

The retrieved RF beat notes and a gaussian fit of their respec-
tive spectra are shown in Fig. S2 (b-d). The degenerate case
results in an almost perfect gaussian distribution with a mea-
sured linewidth of 34 kHz and is likely limited by the linewidth
of the pump laser. A broader beat-note of 85 kHz is observed in
the non-degenerate signal and idler which deviates significantly
from the gaussian-like behavior at frequencies beyond±300kHz.
Here, the linewidth begins to follow a 1/ f -like shape due to
additional phase noise in the non-degenerate phasematching
condition [6]. An in-depth investigation of this behavior using
more rigorous stability measurements such as the three-cornered
hat method [7, 8] is needed to confirm the origin on this noise
and is beyond the scope of this work.
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