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1. High fabrication tolerance achieved using adiabatic
directional couplers.By using adiabatic directional couplers, we show this platform can achieve a high tolerance to fabrication variation and can thus achieve broadband low insertion loss. In contrast to traditional interference-based directional couplers [1–3] for spatial mode conversion, adiabatic directional couplers [4–7] do not require precise phase matching and exact length. In adiabatic couplers, the local effective refractive index ݊௘௙௙  of the modes is tuned adiabatically by tapering the widths of the two coupled waveguides. By tapering each of the waveguides in opposite directions, we ensure that the modes of the two individual waveguides have the same ݊ ௘௙௙ somewhere along the center of the coupler. These two individual modes couple and form supermodes (S1 and S2). In contrast to a traditional interference-based directional coupler, in which both supermodes are excited and interfere with each other, only one of the supermodes is excited in an adiabatic directional coupler. As an example, we show in Fig. S1(b) an adiabatic directional coupler that couples the TEଷ mode of the bus waveguide (TEଷୠ୳ୱ) to the TE଴ mode of the access waveguide (TE଴ୟୡୡୣୱୱ ). Fig. S1(a) shows the local effective refractive index ݊ ௘௙௙(z) at each cross section along the directional coupler. One can see that the nୣ୤୤ of the two individual modes (TEଷୠ୳ୱ and TE଴ୟୡୡୣୱୱ) cross each other at the center of the 

directional coupler, resulting in an anticrossing between the supermode S1 and S2. Fig. S1(c) shows the mode profile of the super mode S1, which evolves from the TEଷୠ୳ୱ mode at the input to the TE଴ୟୡୡୣୱୱ mode at the output.  We simulate the coupling efficiency of each adiabatic directional coupler (see Section 2), from which we calculate the insertion losses of the multi-pass structures in the presence of dimensional variation, as shown in Fig. S2(a). The simulated insertion losses remain less than 0.6 dB, 1.5 dB, and 2.8 dB for the 3-pass, 5-pass and 7-pass structures, respectively, if the dimensional variation is controlled within ± 15 nm. Our simulation shows that the insertion loss of the 7-pass structure can potentially be reduced to only 2 dB if the fabrication variations in all the geometries are kept within ± 11 nm. This large tolerance of our platform is in stark contrast to the sub-nanometer tolerance required in resonators. Although resonators can also enable low-power devices via light circulation, the resonance is unpredictable due to tight fabrication tolerance, strong temperature sensitivity, and narrow optical bandwidth. Resonators therefore require active compensation to align the resonance with the laser frequency. Our platform, in contrast, requires no active compensation since its tolerance is practically achievable in both electron beam and deep ultraviolet lithography [8]. We show in Fig. S2(b) the simulated insertion losses of the multi-pass structures at different wavelengths. All structures show theoretical 3-dB bandwidths exceeding 200 nm. The large 
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from the measured current (with Keithley 2400-LV source meter) and from the resistance of each heater.   
10. Extraction of the insertion loss from the visibility 
of interference fringes. The insertion loss of the multi-pass structure is directly related to the visibility of the MZI interference fringes, assuming the splitters of the MZI have an accurate split ratio of 50/50. The visibility V of interference fringes is defined as ( ௠ܲ௔௫ − ௠ܲ௜௡)/( ௠ܲ௔௫ + ௠ܲ௜௡), where ܲ ௠௔௫ and ܲ ௠௜௡ are the power at the peak and the valley, respectively. The insertion loss in dB is given by −݈݃݋ଵ଴൛2ൣ1 − √(1 − ܸଶ)൧ ܸଶ⁄ − 1ൟ. We fit the acquired fringes locally with sine functions, extract the visibility, and calculate the insertion loss as a function of wavelength.   
11. Phased Array Device Fabrication.  We fabricate the optical phased array on a silicon-on-insulator (SOI) wafer from Soitec with a 220 nm top silicon layer and 2 µm buried oxide layer. The silicon wire waveguides are patterned by electron beam lithography (Elionix ELS-G100) using ma-N 2403 photoresist, etched by inductively coupled plasma (ICP) using fluorine-based chemistry, and clad with 700 nm silicon dioxide (SiO2) by plasma-enhanced chemical vapor deposition (PECVD). On top of the SiO2 cladding, we fabricate 360 µm-long, 540 nm-wide resistive heaters as thermo-optic phase shifters. The metal is sputtered (5 nm Ti and 100 nm Pt) and the heaters are patterned using electron beam lithography followed by Argon ion milling. We fabricate two metal layers, (M1) for the wires and bond pads, and (M2) for a large common ground path. M1 is defined using a double layer of PMMA resist patterned in contact photolithography and a lift-off process. For M1, we sputter 10 nm of Ti followed by 700 nm of Al. We then clad with 1 µm of PECVD SiO2 and etch vias down to connect M1 to M2. For M2, we use the same lift-off process, this time sputtering 10 nm of Ti followed by 1.5 µm of Al.  
 

 

12. Phased Array Device Packaging.  We use a silicon interposer to route the dense array of electrical control signals out to external control circuitry. The silicon interposer is made using a virgin silicon wafer with 50 nm of silicon dioxide grown using dry thermal oxidation. Underneath the footprint of the phased array chip, a window is etched through the thermal oxide down to the silicon substrate using buffered oxide etch (BOE) 6:1 to allow for efficient thermal conduction between the phased array chip and the interposer. A thick metal interconnect layer is sputtered (10 nm Ti, 3 µm Al) and patterned in contact photolithography. The Al is etched using an ICP chlorine-base chemistry. The silicon interposer is attached to a PCB and the phased array chip is attached to the silicon interposer using thermally conductive epoxy. The chip is connected to the interposer with triple stacked gold wirebonds and the interposer is connected to the PCB with a single row of Al wirebonds. The PCB is mounted onto a heatsink.  
 

13. Phased Array Device Characterization.  We characterize the phased array device using a tunable laser source (Ando AQ4321D) that can sweep the wavelength from 1520 nm to 1620 nm. We couple the light into the edge of the chip with a lensed fiber which is mode matched to a 180 nm wide silicon waveguide inverse taper. Light is emitted from the array of emitter gratings at a 45° angle. The far field image of the emitted beam is viewed using a Fourier transform imaging system. Additionally, a tilted mirror is placed above the chip to direct the emitted beam toward a single element, 1 mm diameter photodiode in the Fraunhofer far-field approximately 1 m away from the chip. The detector is connected to a lock-in amplifier. We use an on-chip thermo-optic MZI modulator with the lock-in amplifier to detect the emitted light from the phased array. We control each thermo-optic phase shifter using a National Instruments PXIe-6739 multi-channel analog output module. To align the phases of all the channels and form a beam centered on the fixed detector position, we run a global optimization algorithm [12]. In order to measure the 2D far-field emission pattern, we mount the mirror above the chip with a motorized tilt mount to sweep the vertical direction and a motorized rotation stage to sweep the horizontal direction and obtain a 2D scan of the emission pattern on the single element photodiode.
   
 
 
Table S1. The dimensions of the adiabatic directional couplers used in the multi-pass structure. The radius of the arc is 130 µm. The height of the silicon waveguide is 250 nm. Other notations are defined in Fig. S4. 
 

Mode in the 
access waveguide 

Mode in the 
bus waveguide w1a (µm) w1b (µm) w2a (µm) w2b (µm) G (µm) L (µm) 

TE0 TE1 0.32 0.36 0.67 0.76 0.1 19.8
TE0 TE2 0.32 0.36 1.03 1.15 0.1 23
TE0 TE3 0.32 0.36 1.39 1.55 0.1 26.8
TE0 TE4 0.31 0.35 1.73 1.91 0.1 25.8
TE0 TE5 0.28 0.32 1.98 2.11 0.1 20.2
TE0 TE6 0.275 0.315 2.32 2.44 0.13 24.9
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Table S2. The dimensions of an alternative design that uses interference-based directional couplers. We design these directional couplers to draw a comparison between the adiabatic and the traditional interference-based directional couplers. The bus waveguide is slightly tapered to relax the requirement of exact phase matching [4], but the coupling is not in the adiabatic regime. The radius of the arc is 40 µm. The height of the silicon waveguide is 250 nm. Other notations are defined in Fig. S4. The simulated performance of these directional couplers is shown in Fig. S7. 
 
 

Mode in the 
access waveguide 

Mode in the 
bus waveguide w1a (µm) w1b (µm) w2a (µm) w2b (µm) G (µm) L (µm) 

TE0 TE1 0.39 0.39 0.77 0.85 0.1 17.4
TE0 TE2 0.39 0.39 1.18 1.3 0.1 21.6
TE0 TE3 0.39 0.39 1.58 1.74 0.1 23
TE0 TE4 0.36 0.36 1.89 2.05 0.1 19.8
TE0 TE5 0.35 0.35 2.15 2.43 0.1 30.1
TE0 TE6 0.33 0.33 2.47 2.71 0.1 30.1
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