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1. THE RELATION BETWEEN THE WINDING NUMBERS
AND THE ROBUSTNESS OF ASYMPTOTIC ENTAN-
GLEMENT IN QUANTUM WALKS.

For simplification, we firstly begin with considering a local initial
state |x = 0〉 ⊗

∣∣↓y
〉
. The initial density matrix of the spin (coin)

in the momentum space takes the form ρi(k) = 1
2 [1 + di(k) · σ̂],

where 1 is the identity matrix, di(k) = (0, 1, 0) is the Bloch vector
for momentum k and σ̂ is the Pauli vector. At any given time t,
the density matrix of the coin for momentum k can be formally
written as: ρ(k, t) = 1

2 [1 + d(k, t) · σ̂], where the Bloch vector
d(k, t) is given by [1]:

d(k, t) =di(k) cos [2E(k)t] + 2n(k)[di(k) · n(k)] sin2[E(k)t]
+ n(k)× di(k) sin[2E(k)t].

(S1)

di(k) is the initial Bloch vector of the coin ((0, 1, 0) in our cur-
rent case), n(k) is the eigenvector of the effective Hamiltonian
Heff(k) in the split-step quantum walks. For the quantum walks

introduced in the main text, it can be written as [2, 3]:

nx =
sin(θ1/2) cos(θ2/2) sin k

sin[E(k)]

ny =
sin(θ1/2) cos(θ2/2) cos k + cos(θ1/2) sin(θ2/2)

sin[E(k)]

nz =
− cos(θ1/2) cos(θ2/2) sin k

sin[E(k)]

(S2)

where E(k) represents the quasi-energy and defined as:

cos[E(k)] = cos(θ1/2) cos(θ2/2) cos k− sin(θ1/2) sin(θ2/2).
(S3)

Since we only consider the asymptotic behavior of the walk,
we get the reduced density matrix of the coin in the long-time
limit as:

ρC =
1
2
[1 +

∫ π

−π

dk
2π

(di(k) · n(k))n(k) · σ̂)]

=
1
2
[1 +

∫ π

−π

dk
2π

(ny(k)n(k)) · σ̂)].
(S4)

It has been shown in Ref. [4] that the entanglement of the
whole quantum state ρ, quantified by the von Neumann entropy
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SE[ρ], can be expressed as a function of the polarization purity
(PP), which is defined as the length of the Bloch vector of ρC
(denotes as P [ρC]). That is, we can rewrite the von Neumann
entropy in terms of P [ρC] as:

SE[ρ] = −
1
2

log2(
1−P [ρC]

2

4
)− 1

2
P [ρC] log2(

1 + P [ρC]

1−P [ρC]
).

(S5)
Therefore, the robustness of entanglement is equivalent to the
robustness of the corresponding PP.

From Eq. S4 and its definition, PP can be directly given in
terms of the spinor eigenvector as:

P [ρC] = |
∫ π

−π

dk
2π

(ny(k)n(k))| =
∫ π

−π

dk
2π
|ny(k)|2

=
∫ π

−π

dk
2π

[cos(θ1/2) sin(θ2/2) + sin(θ1/2) cos(θ2/2) cos k]2

1− [cos(θ1/2) cos(θ2/2) cos k− sin(θ1/2) sin(θ2/2)]2
.

(S6)

By introducing z = eik in the complex plane, we can apply the
residue theorem to calculate the integral, and PP is then given
by P [ρC] =

∮
|z|=1 dz f (z)/(2πi), where

f (z) =

4z[cos(θ1/2) sin(θ2/2) + sin(θ1/2) cos(θ2/2)( z+ 1
z

2 )]2

4z2 − [(1 + z2) cos(θ1/2) cos(θ2/2)− 2z sin(θ1/2) sin(θ2/2)]2
.

(S7)

The complex function above has five poles,

z0 = 0,

z1 =
sin(θ1/2) sin(θ2/2)− 1 + [sin(θ1/2)− sin(θ2/2)]

cos(θ1/2) cos(θ2/2)
,

z2 =
sin(θ1/2) sin(θ2/2)− 1− [sin(θ1/2)− sin(θ2/2)]

cos(θ1/2) cos(θ2/2)
,

z3 =
sin(θ1/2) sin(θ2/2) + 1− [sin(θ1/2) + sin(θ2/2)]

cos(θ1/2) cos(θ2/2)
,

z4 =
sin(θ1/2) sin(θ2/2) + 1 + [sin(θ1/2) + sin(θ2/2)]

cos(θ1/2) cos(θ2/2)
.

(S8)

And the corresponding residues of f (z) at the poles are given
by:

Res[z0] = − tan2(θ1/2),

Res[z1] =
sin(θ1/2)− sin(θ2/2)

2 cos2(θ1/2)
,

Res[z2] =
− sin(θ1/2) + sin(θ2/2)

2 cos2(θ1/2)
,

Res[z3] =
sin(θ1/2) + sin(θ2/2)

2 cos2(θ1/2)
,

Res[z4] =
− sin(θ1/2)− sin(θ2/2)

2 cos2(θ1/2)
.

(S9)

Note that only the poles inside the unit circle |z| = 1 contribute
to the value of PP, from which we can establish the relation
between PP and the winding number of quantum walks.

In quantum walks, the trajectory of eigenvector n(k) winds
around the vector A(θ1) = (cos(θ1/2), 0, sin(θ1/2)) on the
Bloch sphere when k goes from −π to π. Actually, the vector
A(θ1) defines the chiral symmetry supported by the quantum

walks. Therefore, the trajectory of eigenvector n(k) is fixed on a
plane containing the y-axis and perpendicular to A(θ1). When
the trajectory of n(k) forms a closed circle, its winding number
W = 1, whileW = 0 when trajectory is an arc. With the expres-
sion of n(k), it is clear that n(k) and n(−k) are symmetry along
the y-axis, i.e. ny(k) = ny(−k). In addition, nx(0) = nx(π) = 0
and nz(0) = nz(π) = 0, thus n(0) and n(π) are on the y-axis
and they can only parallel or anti-parallel.

Therefore, the relation of n(0) and n(π) is directly corre-
sponding to the winding number of the trajectory of n(k): if they
are parallel, the n(π) is back to the initial n(0) and the trajectory
of n(k) can not form a closed circle (W = 0); on the other hand,
if they are anti-parallel, n(π) and n(0) are two opposite vectors
and the trajectory of n(k) forms a closed circle (W = 1).

As a result, the winding number (i.e. the parallel or anti-
parallel relation between n(0) and n(π)) can be determined by
the sign of

n(0) ·n(π) =
sin2(θ2/2) cos2(θ1/2)− cos2(θ2/2) sin2(θ1/2)√
1− (cos[(θ2 − θ1)/2)2

√
1− (cos[(θ2 + θ1)/2)2

.

(S10)
If n(0) · n(π) < 0, i.e | tan(θ2/2)/ tan(θ1/2)| < 1, n(0)
and n(π) are anti-parallel; while n(0) · n(π) > 0, that is,
| tan(θ2/2)/ tan(θ1/2)| > 1, n(0) and n(π) are parallel. Thus, if
the winding numberW = 1, | tan(θ2/2)/ tan(θ1/2)| < 1; if the
winding numberW = 0, | tan(θ2/2)/ tan(θ1/2)| > 1 and vice
versa.

With the previous analysis, when the winding numberW =
1, only the poles {z0, z1, z3} (when θ1 ≥ 0 ), or {z0, z2, z4} (when
θ1 < 0) are inside the unit circle |z| = 1 (note that the poles z1
and z3, z2 and z4 are paired to cancel the effect of θ2); meanwhile,
when the winding numberW = 0, only poles {z0, z1, z4} (when
θ2 < 0) or {z0, z2, z3} (when θ2 ≥ 0) are inside the unit circle
|z| = 1 (see Fig. 1). Therefore, via calculating the residues, we
can get the analytical expressions for P [ρC]:

P [ρC] =

 Res[z0] + Res[z1(2)] + Res[z3(4)],

Res[z0] + Res[z1(2)] + Res[z4(3)],

=


− sin2(θ1/2)+sin(|θ1|/2)

cos2(θ1/2) , | tan( θ2
2 )/ tan( θ1

2 )| < 1.
− sin2(θ1/2)+sin(|θ2|/2)

cos2(θ1/2) , | tan( θ2
2 )/ tan( θ1

2 )| > 1.

(S11)

From these expressions, it is clear that, when the winding
numberW = 1, the PP and entanglement are only dependent
on the parameter θ1 and robust against the perturbation of pa-
rameter θ2. However, when the winding numberW = 0, the PP
and entanglement are dependent on both parameters θ1 and θ2.

In addition, the robustness of PP can also be closely re-
lated to the stability of the energy range covered by the band
(|E(π) − E(0)|) through group velocity [5]. To establish their
connection, we use the relations, nz(k) = −nx(k)/ tan(θ1/2) =
−dE(k)/dk, where dE(k)/dk is the associated group velocity
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νg(k), and n2
y(k) = 1− n2

x(k)− n2
z(k) to rewrite PP as:

P [ρC] = 1− [1 + tan2(θ1/2)]
∫ π

−π

dk
2π
|νg(k)|2

= 1− [1 + tan2(θ1/2)]
{

1− sin[
π − |E(π)− E(0)|

2
]

}

=



1− [1 + tan2(θ1/2)]

×
{

1− sin[
π−
∣∣π−|θ1|

∣∣
2 ]

}
| tan( θ2

2 )/ tan( θ1
2 )| < 1,

1− [1 + tan2(θ1/2)]

×
{

1− sin[
π−
∣∣π−|θ2|

∣∣
2 ]

}
| tan( θ2

2 )/ tan( θ1
2 )| > 1.

(S12)

In Fig. 2, we collect the different behaviors of the winding
of n(k), the quasi-energy E(k) and ny(k) as a function of the
quasi-momentum k in different topological phases. To make it
clear, we fix the parameter θ1 = π/2 and focus on the parameter
θ2. Note that fixing the value of θ1 means fixing the symmetrical
axis A(θ1) [2, 3] which determines the chiral symmetry.

It can be clearly seen that, in the trivial topological phase,
the winding of n(k) forms an arc on the surface of Bloch sphere
with a θ2-dependent length. The arc length can change from
long to short (even degenerates to zero, i.e., a single point) when
varying θ2, and correspondingly, the energy range covered by
the band (|E(π)− E(0)|) increases or decreases within the two
regions {−π,−π/2} and {π/2, π}. At the same time, ny(k)
occupies a limited area along the y-axis. On the contrary, in
the non-trivial topological phase, the vector n(k) winds around
the origin forming a closed circle. The energy band only shifts
with minor deformations when changing θ2 and always covers
a stable range of energy. And the associated y-component ny(k)
always fill up the y axis.

The method outlined above can be easily applied to scenarios
with any localized initial state (just by replacing ny(k) with
di(k) · n(k) in Eq. S4, where di(k) is the Bloch vector of initial
coin state for momentum k) and other topological systems.

Since the different robustness of the asymptotic entangle-
ment of the quantum walk in different phases, it can be used
to determine the phase boundary of the topological phases. As
demonstrated in Fig. 3, although the exact value of the asymp-
totic entanglement changes for different initial states, it is always
independently of the control parameter θ2 in the non-trivial topo-
logical phase, and the phase boundaries can be further revealed.

2. ROBUSTNESS OF ENTANGLEMENT IN OTHER MOD-
ELS.

Actually, our previous argument about the robust asymptotic
entanglement in the topological phase withW = 1 is not only
limited to the quantum walks system, it can feasible for more
topological systems.

A. SSH model.
The Su-Schrieffer-Heeger (SSH) model [6], a one-dimensional
topological insulator with the chirality symmetry, describes elec-
trons hopping on a chain, which consists of N unit cells. In this
model, each unit cell consists of two sites, one on sublattice A
and one on sublattice B, and the hopping term connects the two
sublattice sites. Hopping amplitudes υ and ω represent the intra-
cell hopping and intercell hopping, respectively. The dynamics

of each electron is described by a single-particle Hamiltonian

Ĥ = υ
N

∑
m=1

(|m, B〉〈m, A|+ h.c.)+ω
N−1

∑
m=1

(|m+ 1, A〉〈m, B|+ h.c.).

(S13)
Here, |m, A〉 and |m, B〉 are the states of the chain where the
electron is in the cell m on sublattice A and B, respectively, and
h.c. represents the Hermitian Conjugate. The matrix H(k) of the
bulk momentum-space Hamiltonian can be expressed as

H(k) =

 0 υ + ωe−ik

υ + ωeik 0

 ,

H(k)

 a(k)

b(k)

 = E(k)

 a(k)

b(k)

 .

(S14)

The Bloch Hamiltonian is a 2× 2 matrix

H(k) = E(k)n(k) · σ̂. (S15)

where σ̂ is the Pauli vector, E(k) characterizes the typical band
structure and n(k) defines the direction of the eigenstates for
each momentum k. The dispersion relation for the SSH model
and components of the 3-dimensional vector n(k) are given by

E(k) = |υ + ωe−ik| =
√

υ2 + ω2 + 2υω cos k. (S16)

nx(k) =
υ + ω cos(k)

E(k)
,

ny(k) =
ω sin(k)

E(k)
,

nz(k) = 0.

(S17)

The topological invariants can be characterized by the wind-
ing number W , which counts the number of times the loop
winds around the origin of the nx, ny plane. For the SSH model,
the winding number W is 0 when υ > ω and 1 when υ < ω.
The band gap closes when υ = ω. In Fig. 4, we plot the phase
diagram of the SSH model together with numerical simulations
of the asymptotic entanglement between the internal (sublattice
index A,B) and external degrees of freedom (unit cell index m)
associated with an electron initially localized at a lattice site with
initial parameters {θ, φ} = {π/2, 0} after a long time evolution.

B. BCS theory of superconductivity.
We consider a one-dimensional superconductor with p-wave
symmetry, and the effective Hamiltonian in momentum space
is [7]:

H = ∑
k

Ψ†
k H(k)Ψk (S18)

with,

Ψk =

 ck

c†
−k

 , H(k) =
1
2

 ε(k) 4k

4k −ε(k)

 (S19)

where ε(k) = k2

2m −µ with k2

2m is the single-particle kinetic energy
and µ is the chemical potential, 4 is the energy gap, ck(−k)

and c†
k(−k) are the annihilation and creation operators. Then

we replace k and k2 with sin k and 4[sin(k/2)]2, respectively,
to obtain the lattice effective model. The Bloch Hamiltonian
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H(k), dispersion relation E(k), and the components of the 3-
dimensional vector n(k) are given by:

H(k) = E(k)n(k) · σ̂. (S20)

E(k) = |
√
(4k)2 + (εk)2|. (S21)

nx(k) =
4k

E(k)
,

ny(k) = 0,

nz(k) =
εk

E(k)
.

(S22)

where4k = 4 sin k and εk = [sin(k/2)]2
m − µ. The weak pairing

phase (µ > 0) is the non-trivial topological phase withW = 1
and the strong pairing phase (µ < 0) is the trivial topological
phase withW = 0. It is gapless only when µ = 0 which sepa-
rates two physical states. In Fig. 5, we plot numerical simulations
of the entanglement between the internal and external degrees
of freedom associated with an electron initially localized at a
lattice site with initial parameters {θ, φ} = {π, π/2} after a long
time evolution.
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Fig. 1. The diagrammatic distribution of the poles (colored points) of f (z) in the complex z-plane for (a) a non-trivial topological
phase (W = 1) with {θ1, θ2} = {π/2, π/5} and (b) a trivial topological phase (W = 0) with {θ1, θ2} = {π/2, 4π/5}. Apart from z0,
the paired poles {z1,z3} or {z2,z4} appearing in the unit circle |z| = 1 can cancel out the effect of parameter θ2 on PP. When varying
the θ2, the locations of the poles z1 or z2 move along the real axis, exiting or entering the unit circle. Note that only the poles inside
the unit circle have a contribution to the PP. ForW = 1, the valid poles are z1 and z3, which are a pair and can cancel out the effect
of θ2. While forW = 0, the valid poles are z2 and z3, which are not a pair and can not cancel out the effect of θ2.
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Fig. 2. The dispersion relation of quasi-energy E(k) (left panel) and the winding of eigenvector n(k) accompanying with its y-
component ny(k) (right panel) for the quasi-momentum k ∈ [−π, π). We consider different θ2 in (a-b) for trivial and (c-d) for
non-trivial topological phases, respectively. The red and green lines in left panel stand for the topological phase transitions where
a gap is closed at quasi-energy E(0) = 0 for θ2 = −π/2, and at E(π) = π for θ2 = π/2, respectively. In (b), the winding of n(k)
(colored points) forms an arc on the surface of Bloch sphere with its y-component ny(k) occupies a limit range (blue points), corre-
spondingly, the energy range covered by the band |E(π)− E(0)| increases (or decreases) with θ2 (a). On the contrary, in the non-trivial
topological phase, the energy band just shifts as the change of θ2 and covers a stale range of energy (|E(π)− E(0)| = π/2 in this case)
as shown in (c), correspondingly, n(k) winds around the vector A(θ1) always forming a closed circle, and its y-component ny(k)
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2
(|H〉 + |V〉) ⊗ |x = 0〉 and (c) |H〉 ⊗ |x = 0〉 when θ1 is π/2. The vertical black-dashed lines at θ2 = ±π/2 show the

phase boundaries. The asymptotic entanglement remains a constant in the region {−π/2, π/2} (non-trivial topological phase) and
increases or decreases in the two regions {−π,−π/2} and {π/2, π} (trivial topological phase). Independently of the specific initial
state, we can obviously observe that the entanglement is independently of the control parameter θ2 in the topological phase with
W = 1.
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when the energy gap4 and 1

m are fixed as 1 and 3, respectively. The entanglement in the non-trivial topological phase (pink re-
gion) is a constant, i.e., more robust than the chemical potential µ in the trivial topological phase (yellow region). With the different
robustness of entanglement, the phase boundary at µ = 0 can be further obtained.
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Fig. 6. Numerical simulations of the average entanglement in the presence of dynamic disorder in the split-step quantum walks
staring from a localized state |x = 0〉 ⊗

∣∣↓y
〉
. In this simulation, the first parameter θ1 is fixed as π/2, and dynamic disorder is intro-

duced via random fluctuations of the second parameter θ2 at each step. In (a-c), we numerically calculate the average values of the
entanglement (red lines) with three different random disorder strengths ∆θ2 = π/60, π/15 and π/8 while varying θ2 in the range
{−π, π} for a walk of 13 steps. The black-solid lines represent the asymptotic entanglement without random disorder. As shown in
(a-b), it can be observed that the average entanglement in the topologically non-trivial phase is almost invariant when the strength
of disorder is small (chirl-preserving disorder). With increasing disorder strength, the disorder will destroy the topological charac-
ter of system and the associated invariant of average entanglement (shown in (c)). In (d-f), the average entanglement calculated for
a 13-, 25- and 50-step walk in the presence of disorder with strength ∆θ2 = π/15 is shown. We can see that the average entangle-
ment in the topologically non-trivial phase is almost invariant when the number of the steps is small. As the increase of evolution
time, the invariant of average entanglement in the topologically non-trivial phase will be destroyed. The number of samples is 100
in (a-f).
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