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captions for the media that contain functional imaging results are included. 
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Fig. S17.  Empirical PSF of the XLFM obtained by taking a z-stack image of a green fluorescent bead with 1μm diameter with 2.5μm z-step size. Top left, axial projection. Top right and bottom, lateral projections.  
     

Table S1.  System design 

 Objective lens Relay lens 1 Relay lens 2 Microlens Camera 

XLFM1 

16x 0.8NA  
water dipping 
objective lens  

(CFI75 LWD 16xW, 
Nikon) 

f=180mm  
achromatic doublet 
(AC508-180-A-ML, 

Thorlabs) 

 
f=125mm  

achromatic doublet 
(PAC074, Newport) 

f=36.1mm 
plano-convex 

axial position offset  
= 0.5mm 

29 lenses in total 

Andor Zyla 5.5 

XLFM2 
& 

hybrid 
LSM-

SDLFM 

f1=36.6mm 
f2=35.4mm 

plano-convex 
axial position offset  

= 0mm 
29 lenses in total 

Andor Zyla 5.5 

XLFM3 

f1=36.6mm 
f2=35.4mm 

plano-convex 
axial position offset  

= 0mm 
19 lenses in total 

Hamamatsu Orca 
Flash 4.0 v3 

Table S2.  Simulation parameters

Parameters Value 
number of neurons 80,000 

size of neurons (radius) 2 [µm] – 2.5 [µm] 
spatial distribution of neurons A sphere was randomly generated within the volume predefined by a fish brain shaped mask. The 

sphere was accepted as a neuron if it does not spatially overlap with any existing neuron. This process 
was repeated until the target number of neurons was reached. 

average distance from a cell to the nearest cell 
(center-to-center) 

5.54 [µm] 

rise time (GCaMP) 45 [msec] 
decay time constant (GCaMP) 142 [msec] 

dF/F0 (GCaMP) 
(F0 : baseline fluorescence) 

0.3 

cell-to-cell brightness variation  
(GCaMP) 

50% 

synchronicity  6.25%, 12.5%, 25%, 50%, 100% 
average effective firing rate 0.2 Hz, 0.4 Hz, 0.8 Hz, 1.75 Hz, 20 Hz 

frame rate 20 [Hz] 
read noise  

(s.t.d. level relative to the brightest pixel value) 
0.1%  

shot noise 
(number of the expected shot noise, √ࡺ 

, at the brightest pixel) 

100 e- 

optical configuration Objective lens: 16× 0.8NA 
Microlens array focal length = 36.1mm 

Relay lens 1 focal length = 180mm 
Relay lens 2 focal length = 125mm 

Pixel size = 6.5 µm 
Number of pixels = 2160 × 2560 

 (embedded in the point spread function by using an empirical PSF of XLFM1) 
 

Table S3.  System-data correspondence 

System Data 
XLFM1 Fig. 3, Fig. S1, Fig. S4, Fig. S5, Fig. S6, 

Fig. S7, 
Fig. S16, Media S1, Media S2, Media 

S4, Media S5 
XLFM2 Fig. S2, Fig. S9, Media S3, Media S6, 

Media S7 
XLFM3 Fig. 5, Fig. S10, Fig. S11, Fig. S12, 

Media S9, Media S10, Media S11, 
Media S12, Media S13 

hybrid LSM-SDLFM Fig. 4, Fig. S8, Media S8   

Media S1. XLFM whole brain functional imaging of a zebrafish larva expressing nuclear localized GCaMP6s pan-neuronally. Maximum intensity projection with rotating view. The data was acquired at a volume rate of 10 Hz.  
Media S2. XLFM whole brain functional imaging of a zebrafish larva expressing GCaMP6f pan-neuronally. Maximum intensity projection with rotating view. The data was acquired at a volume rate of 10 Hz.  
Media S3. SDLFM whole brain functional imaging of a zebrafish larva expressing nuclear localized GCaMP6s pan-neuronally. Maximum intensity projection with rotating view. The data was acquired at a volume rate of 2Hz. Temporal MIP is shown at the beginning.  
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Media S4. SDLFM whole brain functional imaging of a zebrafish larva expressing nuclear localized GCaMP6s pan-neuronally. Maximum intensity projection with rotating view. The data was acquired at a volume rate of 5 Hz. Temporal MIP is shown at the beginning.  
Media S5. SDLFM whole brain functional imaging of a zebrafish larva expressing GCaMP6f pan-neuronally. Maximum intensity projection with rotating view. The data was acquired at a volume rate of 10 Hz. Temporal MIP is shown at the beginning.  
Media S6. SDLFM whole brain functional imaging of a zebrafish larva expressing GCaMP6f pan-neuronally. Maximum intensity projection with rotating view. The data was acquired at a volume rate of 50 Hz. Temporal MIP is shown at the beginning.  
Media S7. SDLFM whole brain functional imaging of a zebrafish larva expressing GCaMP6f pan-neuronally. Maximum intensity projection with rotating view. The data was acquired at a volume rate of 50 Hz. Temporal MIP is shown at the beginning.  
Media S8. Rapidly alternating whole brain functional imaging of a zebrafish larva expressing nuclear localized GCaMP6s pan-neuronally using LSM (left) with a laser light sheet illumination and SDLFM (right) with a LED wide-field illumination to demonstrate the achievable resolution. The data was acquired at 5 Hz.  
Media S9. SDLFM whole brain in vivo functional imaging of an adult Drosophila expressing NLS-GCaMP6m pan-neuronally. Maximum intensity projection with rotating view. The data was acquired at a volume rate of 5 Hz. SDLFM reconstruction (green) is overlaid on the volume-reconstructed low rank component (blue). Temporal MIP is shown at the beginning.  
Media S10. SDLFM whole brain functional imaging of an adult Drosophila expressing GCaMP6s pan-neuronally. Maximum intensity projection with rotating view. The data was acquired at a volume rate of 2 Hz. SDLFM reconstruction (green) is overlaid on the volume-reconstructed low rank component (blue).  
Media S11.  SDLFM whole brain functional imaging of an adult Drosophila expressing GCaMP6s pan-neuronally. Maximum intensity projection with rotating view. The data was acquired at a volume rate of 10 Hz. SDLFM reconstruction (green) is overlaid on the volume-reconstructed low rank component (blue).  
Media S12.  SDLFM whole brain functional imaging of an adult Drosophila expressing GCaMP6s pan-neuronally. Maximum intensity projection with rotating view. The data was acquired at a volume rate of 5 Hz. SDLFM reconstruction (green) is overlaid on the volume-reconstructed low rank component (blue).  
Media S13. SDLFM whole brain functional imaging of a zebrafish larva expressing nuclear localized GCaMP6s pan-neuronally. Maximum intensity projection with a fixed view. The data was acquired at a volume rate of 10 Hz. Temporal MIP is shown at the beginning.  
Code 1. SDLFM software for sparse decomposition and volume reconstruction written in MATLAB. 
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