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The supplemental document gives details on the grid point selection of the cellular Neugebauer
model used for comparison in Section 7 of the primary manuscript. It also shows some results
illustrating the benefits of using a horizontally-shifted sigmoid as the activation function for
the PDL model as introduced in Section 4 of the primary manuscript. Finally, high-resolution
multimaterial 3D prints are presented reproducing both color and translucency in addition to
shape. This is just to illustrate the application area and the need of resource-efficient, accurate
optical printer models.

1. EXPERIMENTS

A. Training and test data for cellular Neugebauer (CN) model
The setup of training set and test set is described in section "7.2. Training and test data" of the
primary manuscript. Here we provide extra details.

As mentioned in the primary manuscript, the traditional cellular Neugebauer (CN) model
requires regular grids as interpolation reference. We select a subset of the available grid points to
be the training set (the reference points). There are different combinations of grid points, with
each combination leading to a different training set thus a different prediction accuracy. The
prediction accuracies obtained on all combinations with the same number of training samples
are averaged to be the accuracy for that number of training samples. The number of training
samples equals to ∏i ki, where ki is the number of selected grid points in the i-th tonal dimension.
Please note that for both the Stratasys dataset and the Mimaki 2 dataset, when there are more than
(inclusive) 3 grid points to be selected in a tonal dimension, {0, 128, 255} are always included for
that dimension. For the Mimaki 2 dataset, when there are more than (inclusive) 4 grid points to
be selected in a tonal dimension, {0, 85, 170, 255} are always included for that dimension.

For CN on the Stratasys dataset, the training set is selected from {0, 64, 128, 191, 255}5 ⊂
CMYKG, and the rest of the dataset is used as the test set. In Table 2 of the primary manuscript,
243 training samples corresponds to {0, 128, 255}5 ⊂ CMYKG (i.e. ∏i ki = 35 = 243 samples), 576
training samples corresponds to 3 grid points in 2 dimensions plus 4 grid points in the remaining
3 dimensions (i.e. ∏i ki = 32 × 43 = 576 samples), 768 training samples corresponds to 3 grid
points in 1 dimension plus 4 grid points in the remaining 4 dimensions (i.e. ∏i ki = 31 × 44 = 768
samples), 1024 training samples corresponds to 4 grid points in each dimension (i.e. ∏i ki = 45 =
1024 samples), 1280 training samples corresponds to 4 grid points in 4 dimensions plus 5 grid
points in the remaining 1 dimension (i.e. ∏i ki = 44 × 51 = 1280 samples), 1600 training samples
corresponds to 4 grid points in 3 dimensions plus 5 grid points in the remaining 2 dimensions
(i.e. ∏i ki = 43 × 52 = 1600 samples), 2000 training samples corresponds to 4 grid points in
2 dimensions plus 5 grid points in the remaining 3 dimensions (i.e. ∏i ki = 42 × 53 = 2000
samples), and 2500 training samples corresponds to 4 grid points in 1 dimension plus 5 grid
points in the remaining 4 dimensions (i.e. ∏i ki = 41 × 54 = 2500 samples).

For CN on the Mimaki 2 dataset, the training set is selected from {0, 43, 85, 128, 170, 213, 255}4 ⊂
CMYK, and the test set consists of 300 samples that are selected randomly from the 1099
random samples. In Table 2 of the primary manuscript, 256 training samples corresponds
to {0, 85, 170, 255}4 ⊂ CMYK (i.e. ∏i ki = 44 = 256 samples), 500 training samples corre-
sponds to 4 grid points in 1 dimension plus 5 grid points in the remaining 3 dimensions (i.e.
∏i ki = 41× 53 = 500 samples), 750 training samples corresponds to 5 grid points in 3 dimensions
plus 6 grid points in the remaining 1 dimension (i.e. ∏i ki = 53× 61 = 750 samples), 1296 training
samples corresponds to 6 grid points in each dimension (i.e. ∏i ki = 64 = 1296 samples), 2058
training samples corresponds to 6 grid points in 1 dimension plus 7 grid points in the remaining
3 dimensions (i.e. ∏i ki = 61 × 73 = 2058 samples), 2401 training samples corresponds to all the 7
grid points in each dimension (i.e. ∏i ki = 74 = 2401 samples).
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Fig. S1. Accuracy (median & max error) vs. dataset size plots for the Stratasys printer.

B. Benefits from the proposed modified activation function (horizontally-shifted sigmoid)
Fig. S1 shows the accuracy (median & maximal error) vs. dataset size plots for the Stratasys
printer, with and without our modification on the sigmoid function. It shows that the horizontally-
shifted sigmoid leads to similar median errors as the regular sigmoid, but much lower maximal
errors.

Fig. S2 visualizes the spectra predictions of 3 samples, with the sRGB colors shown for ground
truth, predicted spectra from the horizontally-shifted sigmoid, and predicted spectra from the
regular sigmoid. We observe that the regular sigmoid leads to weird predictions for some samples
where all the spectra prediction values are either almost 1.0 or almost 0.0, which should be due
to the saturation problem as mentioned in Section 4 of the primary manuscript. However, the
horizontally-shifted sigmoid doesn’t lead to such an issue. Among those samples with weird
predictions, we pick 3 typical ones to show in Fig. S2. It shows that the horizontally-shifted
sigmoid is able to resolve such a prediction issue.

2. 3D PRINTED EXAMPLES

The purpose of this section is to show a few high-resolution multimaterial 3D prints that reproduce
both color and translucency in addition to shape. All prints were created by a 6-material Stratasys
J750 printer. The material arrangements for these prints are computed using a recently proposed
joint color and translucency multimaterial 3D printing pipeline [1]. Translucency is described
with the one-dimensional parameter α [2]. The prints shown here are still based on a printer
characterization using a traditional five grid point cellular Neugebauer model requiring 3125
patches (see. Figure S3) to predict color and the translucency parameter α. The proposed deep-
learning-based models achieve a similar accuracy with just a fraction of training samples. Note
that the 3D printing pipeline has to invert the model to obtain the tonal values for printing
(separation) and also performs color and translucency gamut mapping. Therefore, such prints
cannot be used for assessing the quality of an optical printer model – they are shown here just to
illustrate the application area of the proposed models.

Figure S4 shows the St. Lucy model printed using the sRGB and α values measured from 3 real
samples (see Table S1), with linear transitions between them. Figure S5 shows a 10cm head model
printed with an sRGB texture and two different α values. Blurring of geometric and texture details
increases for the lower α. Figure S6 shows a 25cm head model for which color and translucency
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Fig. S2. Spectra predictions of several cases where horizontally-shifted sigmoid avoids weird
predictions resulted from the regular sigmoid

of human skin is mimicked. Figure S7 shows a partly textured eye prosthesis that was polished
in a post process.

Fig. S3. Printed target used to fit the five grid point cellular Neugebauer model to predict both
color and the translucency parameter α [2]
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Table S1. Measurements of real materials and errors of patches printed with the same values.
Table partly reproduced from supplementary material of [2].

Material Measured from original Errors of printed patch

sRGB α CIEDE2000 α-error

green stone [0.39, 0.40, 0.20] 0.49 2.8690 0.2509

violet stone [0.23, 0.05, 0.26] 0.68 3.3113 0.0460

green soap [0.77, 0.82, 0.69] 0.157 8.1293 0.0019

Fig. S4. The St. Lucy model printed (10cm) with varying RGBA values. At the top is that of the
violet stone, middle is green stone and bottom is green soap, with linear transitions in between.
Fig. reproduced from Brunton et al. [1].

Fig. S5. 10cm head model printed with α = 0.786 (left) and α = 0.518 (right). Identical model
geometry and illumination conditions. Fig. reproduced from Brunton et al. [1].

4



Fig. S6. 25cm head model printed with α = 0.518.

Fig. S7. 3D printed partly-textured eye prosthesis that was polished in a post-process.

5


