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Synchronization-Free Top-Down
lllumination Photometric Stereo
Imaging Using Light-Emitting Diodes
and a Mobile Device: supplemental
document

This document provides supplementary information to "Synchronization-Free Top-Down Illumi-
nation Photometric Stereo Imaging Using Light-Emitting Diodes and a Mobile Device". First of
all, the document details the demodulation process for the recovery of the four images of each
LED. Then, in order to assess our Fast Marching algorithm, we provide a comparison with Yvain
Queau dataset. Finally, to benchmark our top-down illumination method, we demonstrate that
our imaging technique provides similar results and errors as current works in the literature.

1. MEB-FDMA DECODING ALGORITHM

In conventional FDMA, decoding is achieved by a Fourier transform where for each frequency v;,
there are two real-valued orthogonal base vectors, namely sin(27tv;t) and cos(27tv;t). Note that
these two FDMA base vectors are phase shifted by 71/2 to each other. Decoding of an MEB-FDMA
signal is analogously done via a set of orthogonal base vectors resulting from phase shifts of the
original transmitted s; ;. The received signal r(D) from the i" emitter at a given receiver (camera
pixel) will have a certain intensity I; and it will be phase shifted by a phase A; = k + & (compare
Eq. (1) in the main text):

r;l) =1 ((1 S (- 14k %n T “Si,1+(i+k)%”> o

Eq. (S1) assumes that the intensity is integrated during the sample time, which is the case in our
experiment. The actual received signal r is then the sum of the contributions from all emitters:

)
T = Z ] (52)
i=1

The task of the decoding algorithm is to calculate the unknown I; from the known r.

(@)

For a given i we construct an n X n matrix Sk i

5151]) = Si14(j—14k)%n (S3)
where s is given by Eq. (7) in the main text. S does not have full rank:
I; = rank(s) = 2! < n (54)

Its rows span the subspace of R" that contains all phase-shifted versions of s; ;, but they are not
orthogonal. We therefore use an orthonormalization algorithm “GS” to construct I; X n matrices

D0);
D) = Gs(s() (S5)
In this work, GS is the stabilized Gram-Schmidt algorithm, but other orthonormalization proce-

dures can be used as well. The orthogonal decoding matrices D) can be used to decompose r
into its orthogonal components c:

(i) _ v pli),. S6
& = ) Dyjri (S6)
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In conventional FDMA, the signal I; would be the amplitude of the vector c(@), However, due to
the non-orthogonality of the process in Eq. (S1), a slightly different approach needs to be taken in



MEB-FDMA. In a first step, we reconstruct (D)
1.
() _ v (D))
r]. = kzick Dk,]. (57)

Then we note that each of the sequences s; ; has at least one occasion where two 1’s are transmitted
directly after each other. This means that r(!) will have at least one entry with the intensity
corresponding to a synchronized 1-level, and this intensity will be the maximum of (). Therefore
we have: 4

I; = max(r()) (S8)
Eqgs. (S3) to (S8) are the decoding algorithm for MEB-FDMA. The orthonormalization process in
Eq. (S5) is computationally demanding. However it needs to be carried out only once upon system

manufacture/installation and then the matrices D/) can be stored permanently in a memory on
the receiving clients.

A. lllustration on the example of two emitters
Consider two emitters, N = 2. Then according to Eq. (6) in the main text we start off with two

simple square waves:
11 -1 1
st = (S9)
Tooler 11

Then the Manchester encoded transmitter signal s is, according to Eq. (7) in the main text:
1 -1 -1 1 1 -1 -1 1
Si,j = (810)
1

The decoding matrices DV) are calculated by Egs. (53) and (S5) to:

p) —

035 -035 -035 0.35
035 035 -035 -0.35

035 -035 -035 035
(S11)
035 035 —-035 -0.35
035 —-035 035 -0.35
061 020 —-020 020
D@ —
0 0.58 029 —-0.29
0 0 0.5 0.5
-035 035 —-035 0.35
—-0.61 —-020 020 —-0.20
(512)
0 —-0.58 —-0.29 0.29
0 0 -05 =05

The numbers in Egs. (511) and (S12) are not given with full numerical precision.

Let us now look at a specific example, where I = 1 and I, = 2, and emitter 1 has a phase-shift
of 0.3 and emitter 2 a phase shift of 1.7. Then the received signal r is calculated by Egs. (S51) and
(52):

r=102 16 —-02 —-04 18 -24 -18 1.2] (513)

Note that an arbitrary DC offset can be added to r without compromising the evaluation below.
The orthogonal components of 7 according to Eq. (S6) are:

=198 0.85] (S14)

c® = [—0.85 082 323 0 (S15)



The contributions of each emitter to r are then calculated by Eq. (S7):
r) = [1 —04 -1 04 1 —04 -1 0.4] (S16)
r@ = [—0.8 2 08 -08 08 -2 -08 0.8] (S17)

Then finally we correctly decode with Eq. (S8):

L = max(r(1>) 1 (S18)
I = max(r?) =2 (S19)

2. PROOFS

A. Proof of equivalence of Eqgs. (1) and (2) in the main text

By setting &« = 0, (1)=-(2) in the main text is directly shown. For the other direction, we reorder
the left hand side of Eq. (1) in the main text:

n
Y sij ((1 = ®)Si 11 (j—1+k)%n T 0‘51’/,1+(j+k)%n)
=

n
=(1—a) Y 85114 (j-14+k)%n
pi

n
Y S8 14 (jork) % (520)
=1

If Eq. (2) in the main text is fulfilled, then the right hand side of Eq. (520) is 0 and thus (1)<=(2) in
main the text is shown.

B. Proof of Eq. (S4)
Lemma 1. Given a row vector s € R", define kg € {1,...,n} via Eq. (521):

ko=min{ke{l,...,n}|FPeR,Vi=1,...,n:
S14(i-Lekyoon = BSi | (s21)

Then:

1. pe{-1,1}
2. sis periodic. If B = 1 then the period is ky and if = —1 then the period is 2k

3. If a matrix S is constructed from s using Eq. (S3), then its rank is rank(S) < kg

Proof. We calculate the modulus of s:

n n
2 2 2 2112
I = Y57 = ) STh(i14ko)oon = B ls]
i=0 i=0
=[Bl=1 (522)

The periodicity of s follows directly from Eq. (522).
The periodicity of s directly implies that rank(S) < ko, because all the rows from kj on are
periodic repeats of the rows 1 to kg. O

Now letk =k, + q2i, ky < 21, g € N. Then Eq. (7) in the main text gives:
Sijrk = (=1)7s; 1, (S23)
The special case of k, = 0 implies directly that in Lemma 1:
ko < 2! (524)

and therefore following Lemma 1:
rank(5()) < 2f (S25)



Lemma 2. If a matrix $() is constructed from s using Eq. (S3), and we define an 2! x 2 square
matrix $0) by:
s k=1,...,20 j=1,..,2 (526)
Then $() has full rank.
Proof. Consider the equation system:

2i

Yocksiji1ak =0 Vj=1,...,2 (527)
k=1

$() has full rank, if and only if Eq. (527) implies that all ¢, are 0, which is what we are going to
show here. We can write Eq. (S27) for even and odd j, following Eq. (7) in the main text:

21‘—1

b j+21
=L {621*1(—1)[/ x| —&—czl(—l)lﬂ]?]},
1=1
o (S28)
21‘—1 . B
=L {CZZ’l(_l)HP i +c21(—1)(’ > 21]} ,
=1
p=1,...,271 (30)
g=1,...,21 (S31)

The right hand sides of Egs. (528) and (S29) are zero and thus equal to each other, yield the
equation set (S32):

21‘—1

0=) cu {(—1)(%1 + (—1)(‘];%11@
=1
2i-1 [R+l-‘ "qﬂfl-‘
- ) e {(*1) T4 (1) ] (S32)
=1

We can determine the ¢ from Eq. (532) by iteratively looking at specific values of p and q. We
perform the following iteration:

Initial conditions for iteration
Consider p = 21'*1,0/ =21 then Eq. (532) is:

i-1
0=—c+ jZé [c21 — €21-1] (533)

Consider p = 1,4 = 2/, then Eq. (S32) is:
0=c1—c2+2y (S34)

Consider p = 2/~1,4 = 1, then Eq. (S32) is:
0=oc (S35)

Consider p = 1,9 = 1, then Eq. (532) is:

2111

0= z; [c21-1 — €] +cpi1 4 (S36)

Equations (S33), (534), (S35), and (S36) together imply:
cl=c2=1c, =0 (S37)



With this knowledge, consider again p = 1,9 = 1, then Eq. (532) is:

0i-1_q oi-1

0= Y cuy— )Y o
=2 =2

Consider p = 1,9 = 2, then Eq. (532) is:

211
0= Y [ea—cy1]+cuy
1=2
Equations (S38) and (S39) imply:
Cri_1 = 0
Iteration Step m.a
We know that:

1=0,c=0,c=0 Vk>2'—2(m—1)

Consider p = m — 1,9 = m — 1, then Eq. (S32) is:

21 —m+1
0= Y lew—caua
1=2
Consider p = m,q = m — 1, then Eq. (S32) is:
21 21 —m+1
0= Y cu— Y cuom
1=2 1=2

Equations (542) and (543) imply:
Coi o2 = 0
Iteration Step m.b
Consider p = m,q = m, then Eq. (532) is:

2 1_m 21 —m41
0= Y cu— Y, cus
1=2 1=2
Consider p = m,q = m + 1, then Eq. (532) is:
2i-1_m
0=Y [ea—ca 1]+ omi
1=2

Equations (S45) and (S46) imply:
Ci—gmt1 =0
(Iteration finished)

By repeating steps m.a and m.b iteratively for m = 2,...,2/~1 — 1 it is shown that:

=0 Vk=1,...,2

And thus, § (1) must have full rank.

(S38)

(S39)

(540)

(541)

(S42)

(S43)

(S44)

(S45)

(S46)

(547)

(S48)

Remark: It has been observed empirically that the determinant of $() is det(5()) = 221 for

i =1,...,8, but this relationship has not been proven in general.

O

Note that S() has at least the same rank or higher rank than $() in Lemma 2 and therefore:

rank(5()) > rank(5()) = 2!
Equations (525) and (549) prove Eq. (S54).

(S49)



C. Phase invariant orthogonality and the Kronecker product

In this section we prove that if s is phase invariant orthogonal, then { = s ® v is also phase
invariant orthogonal for any arbitrary row vector v. Let m be the length of v and k = pm + g,
p=0,...,n—=1,4=0,...,m — 1 then we calculate:

nm
Y it (k)% ()
=1

-
|

Il
=
ngE

tim(—1)+1E 14 (m(=1) +1+k) % (nm)
1

1

]

ngE

n
= 2 U014 (I4q)%m Z 5i,iSi 1+ (j+p)%n
j=1

=0 Vi (S50)
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Eq. (551) has been used in Eq. (7) in the main text.

D. Phase invariant orthogonality and the Kronecker product

In this section we prove that if s is phase invariant orthogonal, then t = s ® v is also phase
invariant orthogonal for any arbitrary row vector v. Let m be the length of v and k = pm + g,
p=0,...,n—1,4=0,...,m—1 then we calculate:

nm
) tijtit 1 (k) % ()
j=1

I
=
=

Eim(G—1) 4157 14 (m(—1)+1-+K) % ()
1

1

]

3

n
= ) V101 (g Y SiSit 1+ (jp)%en
=i

=0 Vi#i (S51)
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Eq. (S51) has been used in Eq. (7) in the main text.

3. FURTHER DETAILS ON THE SURFACE NORMAL INTEGRATION

The Fast Marching method relies on updating the smallest value of the gradient within the grid
first and then on updating the next smallest value. As it is not certain that the gradient of the
depth Z only has one global minimum, the Eikonal equation is introduced for a function W of the
form [1]:

W=2Z+Af (S52)

where Z is the height, A a constant and f a squared-distance function that is determined as
f = (x —ux)*+ (y — uy)? with (ux, uy) the starting point coordinates, which are set manually.
The purpose of the function f is to deal with the global minimum value issue of any gradient
grid. In fact, f will cancel all the critical points of the grid by creating one global minimum
value: (uy, uy). By introducing P and Q as: P = VZy = Ny/N; and Q = VZ, = N,;/N; which
represent the gradient of the surface Z of the object, the Eikonal equation can be determined by
solving:

VW, = P+ 2Ax (S53)

VW, = Q+ 2y (S54)

where VW, and VW, are the gradient of W in x and y. Once W is retrieved then it is easy to
recover Z from Eq. (5§52). We implemented the algorithm in Matlab™ following [1-5]



A. Fast Marching methods: 3D reconstruction comparison with Yvain Queau data set

In order to assess our algorithm for the Fast Marching method, we used a data set made available
by Yvain Queau et al. [6] which consist of the mask of the vase, the gradient values of a vase:
P and Q where P = Ny/N; and Q = Ny/N, and the ground truth of the vase. We use the
gradients as inputs with our Fast Marching algorithm and we plot the result, see Fig. S1. By
plotting the ground truth, we can then assess if the reconstruction is accurate. The RMSE between
our reconstruction and the ground truth is equal to 1.8 a.u, as we don’t have details about the
calibration of the object and we can only estimate the error in arbitrary units. The most important
point here is that the shape is exactly the same, hence we can conclude that the algorithm is
working correctly.

a) b)

Yvain Queau Data set: Ground truth of a vase Qur Fast Marching reconstruction

Fig. S1. Fast Marching Method. Comparison of a vase ground truth from a) Yvain Queau data
set [6] with b) our 3D reconstruction using the Fast Marching method.

4. BENCHMARK WITH CONVENTIONAL IN-PLANE CONFIGURATION

For a spherical test object, Figs. S3 a)-d) show the four images obtained after decoding the frames
in the conventional PS configuration that we call ‘in-plane’ (see Fig. S2). The reflectivity of each
decoded image clearly demonstrates the different illumination direction left/bottom/right/top
respectively for LED1, LED2, LED3 and LED4. According to the image scale, the amount of light
for each direction is similar.

Controller

Mobile phone  LED 3

Jr=x;
Top Acquisition
Top-Bottom-Left-Right
PS configuration

Fig. S2. Schematic of the photometric stereo imaging setup in the conventional configuration.

Figs. S3 e), f), g) show the corresponding surface normal components Ny, Ny, Nz. As expected
from the “in-plane” acquisition scheme in Fig. S2), Ny correctly distinguishes left and right facing
surfaces of the object. Similarly, Ny, correctly identifies up and down facing surfaces. Finally, as
we cannot see the back of the object, N, is always positive with some variations due to the depth
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Fig. S3. 'In-plane’ configuration results. a), b), c) and d) Decoded images after demodulation
of the recorded frames, respectively for LED1, LED2, LED3 and LED4. e), f), g) Corresponding
surface normal components Ny, Ny, N;. h), i), j) 2.5D reconstruction of the sphere respectively
perspective view, top view and RMSE error map. k), ), m), n) o) Sphere ground truth surface
normal components and topography, respectively Ny, Ny, Nz, perspective view and top view.



of the object. By comparing it with the surface normal vectors of the ground truth of the sphere in
Figs. S3 k), 1), m), the match between Ny, Ny and N is satisfactory with some error on N;. Indeed,
we can see that N, decreases slightly faster than the ground truth from its central maximum.
Two 2.5D reconstruction views and the RMSE error map are plotted in Fig. S3 h), i), j) respec-
tively using Eq.(8) and Eq.(9) in maint text. For this 48 mm diameter sphere, we obtained an
RMSE of 2.4 mm and an NRMSE of 5 %. These two results are within the same range of error
as in [7]. Fig. S3 j) shows the RMSE map over the sphere in order to have a visualisation of the
error distribution. We notice that the error is higher at the edge of the sphere compared to the
middle area. This can be explained by the Fast Marching method as the error builds up as the
reconstruction progresses through the surface. By comparing both the error map with the surface
normal components from Figs. S3 e), f), g), we can see that the error on the 2.5D reconstruction is
also closely linked to the error on N,. When focusing on the top of the sphere, the reconstruction
matches the ground truth from its central maximum down to 8 mm, which is deemed satisfactory.
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