Optical Materials EXPRESS

Synchrotron X-ray metrology of dopant distribution and oxidation state in high pressure CVD grown TM²⁺:ZnSe optical fibers: supplement

MICHAEL G. COCO,^{1,2,*} STEPHEN C. ARO,¹ ALEXANDER HENDRICKSON,¹ JAMES P. KRUG,¹ BARRY LAI,³ ZHONGHOU CAI,³ PIER J. SAZIO,⁴ SEAN A. MCDANIEL,² GARY COOK,² VENKATRAMAN GOPALAN,⁵ AND JOHN V. BADDING^{1,5,6,7}

This supplement published with The Optical Society on 11 January 2021 by The Authors under the terms of the Creative Commons Attribution 4.0 License in the format provided by the authors and unedited. Further distribution of this work must maintain attribution to the author(s) and the published article's title, journal citation, and DOI.

Supplement DOI: https://doi.org/10.6084/m9.figshare.13342130

Parent Article DOI: https://doi.org/10.1364/OME.414201

¹Department of Chemistry, Pennsylvania State University, University Park, PA 16802, USA

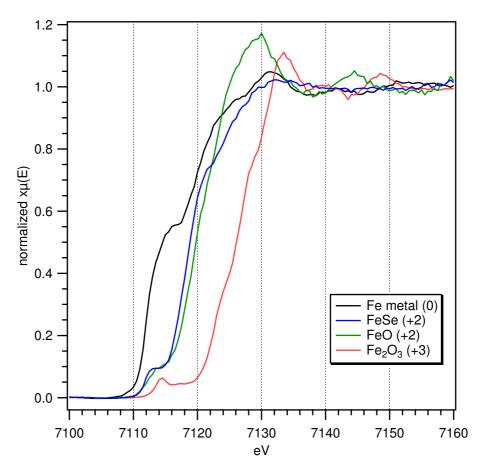
² Air Force Research Laboratory Sensors Directorate, Wright-Patterson Air Force Base, OH 45433, USA

³Advanced Photon Source, Argonne National Laboratory, Lemont, IL 60439, USA

⁴Optoelectronics Research Centre, University of Southampton, Southampton, SO17 1BJ, UK

⁵Department of Materials Science and Engineering, Pennsylvania State University, University Park, PA 16802, USA

⁶Department of Physics, Pennsylvania State University, University Park, PA 16802, USA


⁷Deceased

^{*}michael.coco.1.ctr@us.af.mil

Synchrotron X-Ray Metrology of Dopant Distribution and Oxidation State in High Pressure CVD Grown TM²⁺:ZnSe Optical Fibers: Supplemental Document

This supplemental information contains 4 figures. Figs S1 and S2 X-ray absorption spectra of the standard Fe and Cr compounds. Figs S3 and S4 contain the complete set of XANES spectra collected for the Cr^{2+} :ZnSe and Fe²⁺:ZnSe optical fibers.

1. SUPPLEMENTAL INFORMATION

Fig. S1. Iron XANES standards and oxidation states: Fe metal (+0), FeSe (+2), FeO(+2), and Fe_2O_3 (+3).

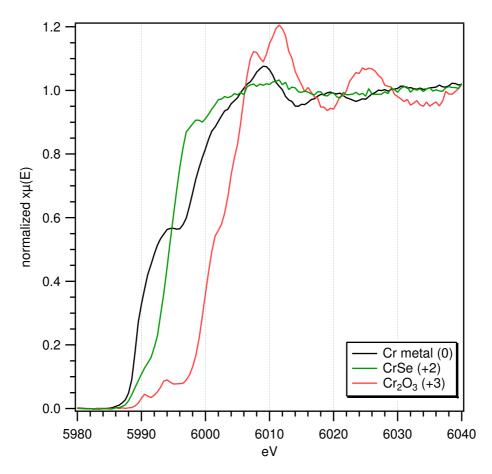
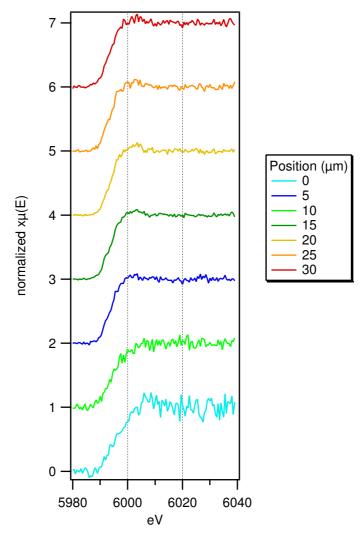
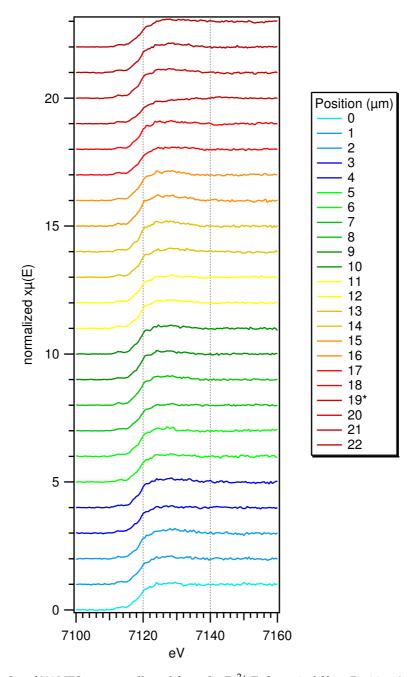




Fig. S2. Chromium XANES standards and oxidation states: Cr metal (+0), CrSe (+2), and $\rm Cr_2O_3$ (+3).

Fig. S3. Set of XANES spectra collected from the Cr^{2+} :ZnSe optical fiber. Position 0 starts at the outer edge of the sample. Subsequent scans take place at 5 μ m intervals moving toward the center of the cross-section. The spectra from the interior of the sample show that the coordination environment for the Cr^{2+} is identical. However the spectra collected at positions 0 and 1 indicate sample oxidation at the outer surface, as indicated by the shifted edge energy.

Fig. S4. Set of XANES spectra collected from the Fe^{2+} :ZnSe optical fiber. Position 0 starts at the outer edge of the sample. Subsequent scans take place at 1 μ m intervals moving toward the center of the cross-section. The spectra from the interior of the sample show that the coordination environment for the Fe^{2+} is mostly identical. The spectrum collected at position 19 is more similar to FeSe than Fe^{2+} :ZnSe and corresponds to a region that had a locally higher Fe concentration.