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1. ALGORITHM FOR LIGHT FIELD PROPAGATION
In this section we discuss the algorithm used for the propagation between the different
planes in more detail. The algorithm, which is based on the on Collins integral [1], can
be rewritten as a convolution with additional phase factors. It can be expressed by
Fourier transforms
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or more concisely as

E2 = P(E1) = ω2F−1 [F (E1ω1)F (ω12)] . (S2)

Here A,B,D are elements of the ABCD or ray transfer matrix describing the optical sys-
tem between planes with optical fields E1(r1) and E2(r2) in the paraxial approximation.
We have omitted global phase and scaling factors.

The corresponding inverse propagation is needed for gradient backpropagation in
the gradient based optimization procedure, see Sec. 2.C.4. in the main text. It is given
by

E1 = P−1(E2) = ω∗1F−1 [F (E2ω∗2 )F (ω∗12)
]

, (S3)

which has a very similar structure as the forward propagator P in Eq. S3, but with
planes 1 and 2 exchanged, and the phase factors ωi are replaced by their complex
conjugate ω∗i .

This propagation algorithm is based on the Fresnel approximation of the Kirchhoff
diffraction integral. As such it does not reflect the vectorial nature of light, which can
have significant deviations close to the focus of high-NA optics compared to scalar
approximation. Using a more rigorous but computationally more expensive vectorial
propagation method [2] turned out to be not needed: polarization effects with our
samples are negligibly small, therefore it is enough to consider only a single polarization
component. Furthermore, since we use the same scalar propagation method to calculate
both the field in the object plane from the incoming field in the pupil plane, and also to
calculate the back focal plane field from the object plane field, in total the errors cancel
and the far-field resembles the physical truth well. The fields obtained for the object
plane are actually not correct, but since we only use the localization property of the field
in the object plane, which both methods provide in similar manner, this approximation
is well justified, and it helps to speed up the computations significantly.

2. CORRECTION OF CONDENSER DISTORTION
In this section we give a detailed description of our procedure to characterize and
compensate the distortions of the condenser lens present in the BFP image. We display
a calibration pattern consisting of a regular rectangular grid of 16× 16 points on the
SLM. From the measured positions of the corresponding spots in the BFP image we



calculate the coefficients of a general 2D polynomial of order 4 that relates the positions
of the spot positions to the undistorted grid, minimizing the total least-square difference
between measured and estimated position. Due to the limited numerical aperture
(NA) of the objective lens of 1.2, which is smaller than the maximum possible value
of NA=1.33 that can be transmitted for a water filled sample chamber, this calibration
procedure misses support grid points at the border. Here we rely on extrapolation by
the polynomial.

Based on this polynomial approximation we calculate an undistorted BFP image.
For each pixel in the resulting image we take the linearly interpolated intensity of the
measured, distorted image at the corresponding position. With this procedure the
remaining misalignment between a corrected BFP image and a numerically propagated
SLM patterns is typically less than one SLM pixel (SLM size 512× 512 pixels).

3. DETAILED OPTICAL SETUP
Here we show the full optical setup (see Fig. S1) and list the used optical elements and
other devices in Table S1.

The achromatic doublet lenses L3 and L4, which image the SLM surface onto the
back focal plane of the objective lens, need to be aligned with care. The distances of the
lenses must be set such that a 4 f relay optics configuration is fulfilled, otherwise off-axis
beams are clipped at the aperture of the objective lens. Furthermore, the orientation of
the achromatic doublets is chosen such that the weakly curved surface of lens L3 points
towards the SLM, and for lens L4 the weakly curved surface is pointing towards the
objective lens. This configuration provides the best imaging quality from the SLM plane
to the pupil plane.

To improve the imaging of the inclined SLM surface to the pupil plane of the objective
lens, which is oriented orthogonal to the optical axis, the lenses L3 and L4 are slightly
tilted. We used the software Zemax OpticsStudio to find an optimal configuration,
which is given as a compromise between aberrations induced by tilting the lenses,
and inclination of the image plane with respect to the pupil plane. The polarization
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Fig. S1. Schematic drawing of our holographic optical tweezers setup. For details
about the optical elements and devices see Table S1. The setup is split up into two
parts. The first part is used to control and shape the laser beam. The second part
consists of the inverted upright microscope where the trapping takes place and the
main cameras for imaging the back focal plane and the sample are located. The block
for the 0th order of the SLM is mounted in a flip mount.
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Table S1. Detailed description of parts use for the optical setup shown in Fig.S1.

Laser fiber laser, max. power 10 W, wavelength 1064 nm (IPG, PLY-
10-1064-LP)

PBS1 polarizing beamsplitter, size 13 mm

BS1 beam sampler, fused silica, back-side with anti-reflective coat-
ing, diameter 25 mm (Thorlabs BSF10-B)

λ/2 half-wave plate, wavelength 1064 nm, diameter 13 mm

BEx 2× beam expander (Thorlabs BE02M)

M1/M2 dielectric mirror, diameter 25 mm (Thorlabs BB1-E03)

L1 achromatic doublet lens, focal length 100 mm, diameter
25 mm (Thorlabs AC254-100-B)

L2/L5 achromatic doublet lens, focal length 200 mm, diameter
25 mm (Thorlabs AC254-200-B)

SLM LCoS spatial light modulator, resolution 512×512, wave-
length 1064 nm (Meadowlark Optics HSPDM512-1064)

L3/L4 achromatic doublet lens, focal length 300 mm, diameter
51 mm (Thorlabs AC508-300-B)

M3 dielectric mirror, diameter 51 mm, thickness 10 mm (EKSMA
Optics BK7 flat harmonic separator, HR>99% at 1064 nm,
HT>97% at 532 nm, AOI = 45°)

BS2 non-polarizing beamsplitter, 10/90 (R/T), size 20 mm (Thor-
labs BS044)

F1 stack of absorptive neutral density filters, transmission ∼
10−4, diameter 25 mm (Thorlabs ND10B, ND30B)

L5/L6 camera lens, focal length 50 mm, aperture 1:2.8, diameter
30.5 mm (Tamron 23FM50SP)

side
port/imaging
camera

CMOS monochrome camera, sensor Sony IMX174, resolution
1920×1200 (Matrix Vision, mvBlueFOX3-2024-G)

BS3/BS4 non-polarizing beamsplitter, 50/50 (R/T), size 25 mm (Thor-
labs BS014)

objective lens water-immersion objective lens, 60×, NA 1.2 (Olympus UP-
LSAPO60XW)

condenser lens achromatic aplanatic condenser lens, NA 1.35, oil immersion
(Nikon Achromat Aplanatic Condenser)

F2 stack of 850 nm longpass filter (Thorlabs FGL850M) and ab-
sorptive neutral density filters, transmission ∼ 10−3, diame-
ter 25 mm (typically Thorlabs ND10B and ND20B)

BFP camera CMOS camera, resolution 1280×1024, sensor ON Semicon-
ductor PYTHON 1300, NIR enhanced (Ximea MQ013RG-ON)
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direction of the trapping light is aligned horizontally, which after reflection at mirror
M3 and BS3 translates to a linear polarization in the sample chamber aligned with
the x-direction (left-right direction in the particle images of Figs. 3–7 of the main text).
To minimize unwanted polarization effects the SLM head is mounted such that its
alignment direction is also horizontal, within the plane of the in- and outgoing laser
beams.

4. ENHANCED METHOD FOR MEASURING ANGULAR INTENSITY DIS-
TRIBUTION OF INGOING TRAPPING LIGHT

In order to accurately determine the intensity distribution of the trapping laser at the
SLM surface without contributions from unwanted reflections at the SLM surface, we
display blazed grating patterns on the SLM to divert the light and block the unwanted
reflections with a metal stripe in the intermediate focal plane, masking out light close to
the optical axis. The intensity modulations at the phase wrapping lines are removed
in a post processing step by averaging with a median filter over several patterns with
gratings oriented at different angles. This approach also reduces distortions induced by
dust particles present in the optical train and the probe chamber. As the beam direction
is altered by changing the grating orientation, the diffraction patterns of dust change
position and are effectively removed by averaging.

The total power in the intensity distribution measured by this procedure lies below the
actual one at the SLM due to limited diffraction efficiency. Hence, we rescale the intensity
according to our model calculation of the SLM diffraction efficiency. Furthermore, we
account for the non-uniform, angle-dependent light losses induced by the sample
chamber and condenser lens by dividing the intensity by the transmission function
T. This procedure yields the far-field intensity distribution of the incoming light for a
uniform pattern, which we use as the illumination for the SLM in our retrieval, assuming
no additional angle-dependent losses, e.g., in the objective lens.

5. ESTIMATION OF THE INCOMING AXIAL MOMENTUM FLUX FOR DI-
RECT FORCE MEASUREMENTS

The reconstructed individual light fields provide us with information about the outgoing
momentum flux Fout of the trapping light. Due to momentum conservation the exerted
force F is given as the difference of the incoming momentum flux F0

F = Fout − F0. (S4)

To obtain knowledge about the exerted force one also needs information about F0. This
is an issue mostly for the axial force component, because there is a large momentum flux
along the beam direction, whereas the radial components of F0 can be easily adjusted to
zero by aligning the trapping laser beam to be centered around the optical axis.

Depending on the experimental settings one has to choose an adequate approach to
determine F0. Generally we prefer to use our detection scheme for Fout to also obtain
consistent data for F0. Repeating experiments with empty traps, where the ingoing
light is transmitted unaffectedly, reveals changes to F0 induced, e.g., by different phase
patterns used to steer trap positions. Alternatively F0 can be calculated from the known
amplitude (see also Sec. 4) and the phase pattern displayed at the SLM, as discussed in
Sec. 4.A of the main text. This avoids repeating the experiment, but it is more sensitive
to a mismatch of the model with the actual settings.

For trapped particles in a static configuration a simple approach is to employ that in
equilibrium the mean exerted force 〈F〉 is zero (provided that external forces such as
drag forces due to a fluid flow are absent). Consequently one can set F0 to the mean
value 〈Fout〉 of the observed momentum flux.
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A. Estimation of F0 in the presence of laser noise

In the presence of dynamic fluctuations that influence the ingoing momentum flux1 F0,
such as laser intensity noise, the above approaches to estimate F0 cannot be used. Either
we rely on the assumption of static conditions, or that repeating an experiment with
empty traps uses precisely the same F0. The latter assumption is not fulfilled for the
data presented in Sec. 4.B.2, where we study the forces related to the thermal motion.
In this experiment the forces are so weak that laser intensity noise needs to be taken
into account. Since the incoming flux F0 ∝ P is proportional to the total laser power P,
fluctuations ∆P of the power P = 〈P〉+ ∆P around its mean value 〈P〉 will affect Fout,
which can be described by

Fout = F + 〈F0〉
P
〈P〉 = F + 〈F0〉

(
1 +

∆P
〈P〉

)
. (S5)

The axial component of the incoming momentum flux F0 is particularly large, about
100 times larger than the typical force due to thermal motion in our experiment. In this
case the amount of noise originating from the power fluctuations is similar to the force
signal of the thermal motion and needs to be compensated.

Since we work with weakly scattering particles, the incoming power of each trapping
beam is hardly changed. Due to the small excursion of the particles in the thermal
force measurements this is maintained at a largely constant level. Even if some fraction
of the light is lost, we have P

〈P〉 ≈
Pout
〈Pout〉 well fulfilled. With this and using the above

mentioned fact that for a trapped particle in equilibrium the mean exerted force is
zero and consequently 〈Fout〉 = 〈F0〉, we can estimate the incoming momentum flux by
F0 ≈ 〈Fout〉 Pout

〈Pout〉 , only using measurements of the outgoing momentum flux and power.
When analyzing the experiment for the thermal force characterization we rely on

the theory for the stochastic motion x(t) of a trapped particle. We rewrite it in terms
of the optical force, where we assume a linear relationship F = −κx between force
and position, with κ denoting the trap stiffness. The trap stiffness also scales with trap
power, κ = 〈κ〉 P

〈P〉 , and we get

Fout =
(
− 〈κ〉x + 〈F0〉

) P
〈P〉 . (S6)

This reveals that by dividing Fout by the (normalized) power, which is well approx-
imated by P

〈P〉 ≈
Pout
〈Pout〉 as stated above, we are able to compensate for the power

fluctuations and recover the forces due to thermal motion. Depending on the specific
interest for a measurement, one may choose −κx or −〈κ〉x as an estimate for the “true”
thermal force in the presence of laser noise. Anyhow, the relative difference is ∆P

P , which
is on the order of 1 % in our setup.

As said above, for the radial direction, F0 is close to zero for a trapping laser well
centered on the optical axis and compensation for F0 is not needed. We observe no
signficant difference if we apply the normalization for the radial directions.

B. Compensation of model imperfections by enforcing energy conservation
The above described approach to compensate for laser noise relies, among other things,
on the fact that in our settings with particles of relatively low refractive index (silica
microspheres, red blood cells) scattering is weak and the ingoing and outgoing laser
power have a fixed ratio. As this is not generally true, this relation is not enforced in
our field retrieval algorithm. This leaves the algorithm the freedom to alter the power
of one or more traps to match the observed data by the model calculations. If we have

1We note that here we only consider the axial force component, but the theoretical considerations given
below apply to the force component in any direction.
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imperfections in our model this can introduce errors in the estimates of the power of
the individual trapping beams. As described in Sec. 4.A of the main text, a simple way
to enforce energy conservation is to divide the obtained individual force Fout by P/P0,
similar to the approach above. Here P0 is the expected in- and outgoing power, which is
either estimated or measured by repeating the experiment using a single trap. Again,
this we perform only for the axial force component.

6. INDEPENDENCE OF RETRIEVED INDIVIDUAL FORCES
The good agreement between the retrieved individual forces and the expected value, as
shown in the main text for 10 microspheres (see Sec. 4.A and Fig. 7) supports our finding
that our method provides sufficiently independent measurements of the individual
forces. For these results we compared the retrieved individual forces with single-trap
measurements, where we repeated the trap movements one by one. However, drifts or
fluctuations of beam position, microscope stage position, or laser power between the
measurements can induce deviations that should not be attributed to our method.

Here we present simultaneous measurements with four traps (plus one reference
trap), where two traps are left empty. The two active traps are scanned over two fixed
microspheres by changing the phase pattern on the SLM. They paths follow different
directions, along the x- and y-axis respectively. The retrieved forces for the two empty
traps, which stay at fixed positions, are expected to be zero, independent of the exact
beam placement. This allows a more reliable comparison of the individual retrieved
forces with the expected value of zero.
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Fig. S2. Individual force profiles obtained from simultaneous measurements with
4 traps (solid lines) and single-trap measurements (dashed lines). Trap 1 and 2 are
scanned over silica microspheres in directions x and y, respectively, with different
offsets to their center. Trap 3 and 4 pass the sample unobstructed and are not moved
throughout the measurement.
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In Fig. S2 all components of the individual forces for the four traps are shown. It
also contains the result for the corresponding single-trap measurements. This data
was rescaled according to the calculated ratio of the power in the individual spots for
single- und multi-trap measurements. In general we observe good agreement between
the individual retrieved forces and the single-trap reference data. For the empty traps
(trap 3 and 4) some deviations from the expected value of zero are visible. No clear
similarity with the force profiles of the occupied traps is visible. The root mean square
force amounts to 0.025 pN, which is about 3% of the maximal exerted force of 0.84 pN
for these particles. Compared to the ingoing axial momentum flux F0,z = 7 pN, which
defines the scale for the maximally possible optical force, the observed mean deviation is
only 0.4 %. This measurement confirms our expectations from the 10 traps measurement
that our method provides accurate results for the individual forces, with errors in the
few-percent range.
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