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S.1 Derivation of the electron’s reduced density matrix when interacting with a general 

optical environment  

In this section, we develop analytical expressions for the electron reduced density matrix 

after its interaction with a general electromagnetic environment. The derivation is based on the 

formalism of macroscopic quantum QED [4,8], linking the quantum properties of the electron to 

the classical properties of the electromagnetic fields. In subsection S.1.1 we derive the density 

matrix for the specific case when the initial electron state is a coherent plane wave, and in 

subsection S.1.2 we generalize our derivations to the case of a general initial density matrix. 

S.1.1 Derivation in the case of an initial coherent plane wave 

We describe the interaction as a perturbation of the minimal coupling Hamiltonian of 

quantum electrodynamics (QED) on a relativistic free electron. We use second quantization and 

the Coulomb gauge for the electromagnetic vector potential and write the Hamiltonian of the whole 

system 

𝐻 = 𝐻ୣ + 𝐻ୣ୫ + 𝐻୧୬୲ (S1) 

where 𝐻ୣ = 𝐩𝟐/2𝑚𝛾 is the electron’s Hamiltonian, 𝐻ୣ୫ = ∫ 𝑑𝐫 ∫ 𝑑𝜔 ℏ𝜔ൣ𝐟መற(𝐫, 𝜔) ⋅ 𝐟መ(𝐫, 𝜔)൧ 
describes the electromagnetic field (omitting the zero-point energy), and 𝐻୧୬୲ = ௘௠ఊ 𝐀(𝐫) ⋅ 𝐩  is the 

interaction Hamiltonian. Note that the Hamiltonians relevant for the electron (𝐻ୣ and 𝐻୧୬୲) are 

valid only for paraxial electron beams [1], which is indeed the case analyzed in this paper. In these 

expressions, 𝑚 denotes the electron mass, 𝛾 is the Lorentz factor, 𝐩 is the electron momentum 

operator and 𝐀(𝐫) is the electromagnetic vector potential operator. The appearance of 𝛾 constitutes 

the relativistic correction to the electron mass. According to macroscopic QED, the 

electromagnetic vector potential can be written as: 
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𝐀(𝐫) = ඨ ℏ𝜋𝜖଴ 1𝑐ଶ  ∫ 𝜔𝑑𝜔∫ 𝑑𝐫ᇱඥIm 𝜖(𝐫ᇱ, 𝜔) 𝑮ന(𝐫, 𝐫ᇱ, 𝜔)𝐟መ(𝐫ᇱ, 𝜔)  + h. c.                      (S2) 

where ℏ is the reduced Planck constant, 𝜖଴ is the vacuum permittivity, and 𝑐 is the speed of light. 

In equation (S2), the macroscopic optical properties of any general structure are described using 

the imaginary part of the relative permittivity, Im൫𝜖(𝐫ᇱ, 𝜔)൯, and the medium's dyadic Green's 

function, 𝑮ന(𝐫, 𝐫ᇱ, 𝜔) that satisfies ∇ × ∇ × 𝑮ന − 𝜖(𝐫, 𝜔) ఠమ௖మ 𝑮ന = 𝛿(𝐫 − 𝐫ᇱ)𝟏ന. The optical excitation 

annihilation operator, 𝐟መ(𝐫ᇱ, 𝜔) = ቀ𝑓መ௫(𝐫ᇱ, 𝜔), 𝑓መ௬(𝐫ᇱ, 𝜔), 𝑓መ௭(𝐫ᇱ, 𝜔)ቁ, and creation operator, 𝐟መற(𝐫ᇱ, 𝜔), 

satisfy the bosonic commutation relations ൣ𝑓መ௜(𝐫, 𝜔), 𝑓መ௝ற(𝐫ᇱ, 𝜔ᇱ)൧ = 𝛿௜௝𝛿(𝜔 − 𝜔ᇱ)𝛿(𝐫 − 𝐫ᇱ) [4,8]. 

We describe the effect of the interaction Hamiltonian within first-order time-dependent 

perturbation theory, such that the Hamiltonian itself acts at most once on the joint wavefunction 

of the electron and the excitations. In the bra-ket notation, the joint wavefunction is written as a 

tensor-product of the states of the electron and the excitations: |𝜓(𝐱𝜔𝑗)⟩ୣห1𝐱ఠ௝ൿୣ୶ୡ, such that ห1𝐱ఠ௝ൿୣ୶ୡ = 𝑓௝ற (𝐱, 𝜔)|0⟩ୣ୶ୡ. Meaning, |𝜓(𝐱𝜔𝑗)⟩ୣ is the wavefunction of the electron after 

exciting a dipole at location 𝐱, direction 𝑗 and frequency 𝜔. Using these definitions and the 

interaction Hamiltonian in Eqs. (S1,S2), we obtain the electron wavefunction in the momentum 

basis after interacting with a specific optical excitation (𝐱𝜔𝑗). We expand the post-interaction 

electron state (which is now coupled to the optical excitation), to first-order in perturbation theory. 

The electron wavefunction due to the interaction is |𝜓(𝐱𝜔𝑗)⟩ୣ = ௘௠ఊ 𝐀𝐱ఠ௝ ⋅ 𝐩|𝜓଴⟩ୣ, where 

𝐀𝐱ఠ௝(𝐫) = ට ℏగఢబ ଵ௖మ 𝜔ඥIm 𝜖(𝐱, 𝜔)൫∑ 𝐺௠௝ற (𝐫, 𝐱, 𝜔)௠ ൯ captures the optical excitation and 𝐩 =
−𝑖ℏ𝜵ഥ. Then, by assuming the initial electron state as a plane wave in the 𝑧 direction, the 

momentum representation of the electron becomes 
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⟨𝐤|𝜓(𝐱𝜔𝑗)⟩ୣ = 𝑖ℏ 𝑒𝛾𝑚 න 𝑑𝑡 ⟨𝐤|𝐀(𝐫) ⋅ 𝐩|𝜓଴⟩
= −𝑖 𝑒𝑣଴4𝜋𝑐ଶ ඨ 12ℏ𝜖଴ 𝜔ඥIm 𝜖(𝐱, 𝜔) δ(𝜔 − 𝑣଴|𝐤଴ − 𝐤|௭) න 𝑑𝐫 𝑒௜(𝐤బି𝐤)⋅𝐫𝐺௭௝ற (𝐫, 𝐱, 𝜔) (S3) 

where 𝑒 is the electron charge, and 𝑣଴, 𝐤଴ are the initial electron’s velocity and wave vector, 

respectively. 

After the interaction, the electron and the optical excitations are entangled. To find the 

reduced electron density matrix, we trace-over [3] the optical excitations’ degrees of freedom in 

the joint density matrix,  

𝜌ୣ = Trୣ୶ୡ൛𝜌୨୭୧୬୲ൟ = ෍ න 𝑑𝐱 න 𝑑𝜔 |𝜓(𝐱𝜔𝑗)⟩ୣ⟨𝜓(𝐱𝜔𝑗)|ୣ௝ . 
Expressing the last result in the three-dimensional electron momentum basis, the reduced electron 

density matrix becomes 

𝜌௘(𝐤, 𝐤ᇱ) = ቌ 𝑒4𝜋𝑐 ඨ 12ℏ𝜖଴ቍଶ න 𝑑𝜔 න 𝑑𝐫ᇱ𝑑𝐫ᇱᇱ𝑒௜(𝐤బି𝐤)⋅𝐫ᇲ𝑒ି௜൫𝐤బି𝐤ᇲ൯⋅𝐫ᇲᇲIm 𝐺௭௭(𝐫ᇱ, 𝐫ᇱᇱ, 𝜔) ,    (S4) 

where we have used the identity ఠమ௖మ ∫ 𝑑𝐱 Im𝜖(𝐱, 𝜔)𝑮ന(𝐫, 𝐱, 𝜔)𝑮നற(𝐫ᇱ, 𝐱, 𝜔) = Im 𝑮ന(𝐫, 𝐫ᇱ, 𝜔) [4]. Eq. 

(S4) emphasizes the important use of the macroscopic QED formalism, as it is completely general, 

for any optical excitation in any optical media. Moreover, the equation can be seen as a nonlocal 

generalization of the results in Ref. [9]. 

In a standard microscope, the electron spatial detector is a two-dimensional; therefore, we 

describe the wavefunction according to the electron’s transverse coordinate, 𝐫், immediately after 
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the interaction with the sample. Accordingly, we can express Eq. (S4) in the transverse position 

basis of the electron:  

𝜌ୣ(𝐫், 𝐫ᇱ் , 𝜔) = 𝛼𝜋ଶ 1𝑐𝑆 න 𝑑𝑧 𝑑𝑧ᇱ 𝑒௜ ఠ௩బ൫௭ି௭ᇲ൯Im 𝐺௭௭(𝐫், 𝑧;  𝐫ᇱ் , 𝑧ᇱ; 𝜔)                     (S5) 

where 𝑆 is the electron beam area and 𝛼 is the fine-structure constant. Reaching Eq. (S5) concludes 

the derivation of this part, yielding Eq. (3) in the main text. 

Notably, our treatment can be generalized to calculate the density matrix at finite times. 

This possibility can cause an interference between energy components and add noise to the system. 

To find the electron density matrix at time 𝑡, assuming that the density matrix in some initial time 

(e.g., 𝑡 = 0) is known, we integrate the S-matrix element ௜ℏ ௘ఊ௠ ∫ 𝑑𝑡 ⟨𝐤|𝐀(𝐫) ⋅ 𝐩|𝜓଴⟩ over a finite time 

interval. This integration effectively replaces the delta function in energy by a sinc function. Then, 

the reduced density matrix, which follows from integrating over all EM field frequencies (and 

positions), is given by. 

𝜌ୣ(𝐫், 𝐫ᇱ் ; ∆𝐸) ∝ න 𝑑Ω sincଶ ൤ 𝑡2𝜋 ൬Ω − Δ𝐸ℏ ൰൨ න 𝑑𝑧 𝑑𝑧ᇱ 𝑒௜ ஐ௩బ൫௭ି௭ᇲ൯Im 𝐺௭௭(𝐫், 𝑧;  𝐫ᇱ் , 𝑧ᇱ; Ω). 
Here, the fundamental energy-time uncertainty relation is manifested by the sinc function, and 

there are indeed multiple frequencies involved in the determination of the energy-resolved electron 

density matrix in short interaction times. This finite-time formula could have interesting 

consequences, for example, if measuring the electron at short distances after an interaction, 

because that could create additional uncertainty. We note that this usage of time-dependent 

perturbation theory might not be gauge invariant in the special case where the electron is measured 

while still being under the influence of the interaction. In the general case of electron microscopy, 
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the electron is measured a long time after the interaction has ended, yet we believe that this special 

case of measurement during interaction could be interesting for future work.  
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S.1.2 Electron-source imperfections 

 In this subsection, we discuss electron-source imperfections and their effects on the 

theoretical predictions. Furthermore, we generalize Eq. (S5) to the case of a general electron 

density matrix.  

The situation of an initial plane-wave electron, which the derivation in S.1.1 assumes, could 

be altered in a number of ways. First, the electron state could be composed of a (pure) superposition 

of momentum components, both in the transverse direction or longitudinal direction. Second, the 

electron could be generated in a mixed state, for example in the energy basis, manifested in an 

initial energy spread. 

One interesting mathematical difference between the cases of coherent and incoherent 

superposition of electron momenta lies in the partial trace stage. In this stage, the electron-

excitation pure state is transformed to an electron-only mixed state in the following manner: for 

every final state of the excitations, the corresponding electron (pure) state is obtained. As a result, 

the final electron density matrix is an incoherent sum of the above pure states. In the initially plane-

wave electron, the spontaneous emission process (due to momentum conservation) yields a single 

electron contribution for each excitation final state. However, when the electron is initially a (pure) 

wavepacket, each final excitation state has contributions from multiple electron momenta, which 

are summed coherently. However, in the mixed-state case all the contributions are summed 

incoherently. 

In both cases, as seen in the derivation below, the inclusion of additional initial momentum-

components means that the electron diffraction pattern (obtained by our derivation) is convolved 

with the initial momentum distribution. This convolution occurs coherently or incoherently, 
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depending on the coherence between the different initial momentum components. As a result, there 

would be different smearing effects of the diffraction pattern, and a decrease in the image 

resolution. 

We now generalize Eq. (S5) to the case where the electron is initially described by a general 

density matrix in the momentum basis 𝜌௜(𝐤௜, 𝐤௜ᇱ), with carrier velocity 𝑣଴ oriented in the 𝑧 

direction. Similarly to subsection S.1.1, we still assume the validity of the paraxial and no-recoil 

approximations, and that the electron momentum spread in the longitudinal direction is small. We 

use Eqs. (S1, S2) to write the following general relation between the initial (𝜌௜) and final (𝜌௙) 

electron density matrices: 

𝜌௙൫𝐤௙, 𝐤௙ᇱ ൯ = ෍ 𝜌௜(𝐤௜, 𝐤௜ᇱ) ෍ 𝑀𝐤೔→𝐤೑𝐫ఠఈ𝑀𝐤೔ᇲ→𝐤೑ᇲ 𝐫ఠఈ∗𝐫ఠఈ𝐤೔,𝐤೔ᇲ                          (S6) 

where 𝑀𝐤೔→𝐤೑𝐫ఠఈ is the matrix element of the interaction, which is written in an explicit form in 

Eq. (S3). Using this explicit form of 𝑀𝐤೔→𝐤೑𝐫ఠఈ, we arrive at this relation between the electron 

initial and final density matrices and the Green’s function, all in their momentum basis: 

𝜌௙൫𝐤௙, 𝐤௙ᇱ ൯ = 1𝑆 න 𝑑𝐤௜𝑑𝐤௜ᇱ𝜌௜(𝐤௜, 𝐤௜ᇱ)𝛿൫𝐸௜ᇱ − 𝐸௙ᇱ − 𝐸௜ + 𝐸௙൯ ൤𝐯௜Im 𝐆 ൬𝐤௜ᇱ − 𝐤௙ᇱ , 𝐤௜ − 𝐤௙, 𝐸௜ − 𝐸௙ℏ ൰ 𝐯௜ᇱ൨ (S7) 

Where 𝐯௜ = ℏ𝐤𝒊ఊ௠. It is evident that the final density matrix is given by the two-sided convolution 

with the response function Im 𝐆൫𝐤௜ − 𝐤௙, 𝐤௜ᇱ − 𝐤௙ᇱ , 𝜔൯. For the next steps, we use the 

approximation for the electron initial velocity 𝑣଴ ≅ ℏ௞೔௠ 𝐳ො ≅ ℏ௞೔ᇲ௠ 𝐳ො, and the no-recoil approximation 

(ா೔ିா೑ℏ ≅ ൫𝐤௜ − 𝐤௙൯ ⋅ 𝐯଴), as used in the plane-wave derivation. Using the transformation to the 

position basis of all quantities, we arrive at the final general result: 
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𝜌௙(𝐫், 𝐫ᇱ் , 𝜔) = 𝜌௜(𝐫், 𝐫ᇱ் ) ⋅ 𝛼𝜋ଶ 1𝑐 න 𝑑𝑧 𝑑𝑧ᇱ 𝑒௜ ఠ௩బ൫௭ି௭ᇲ൯Im 𝐺௭௭(𝐫், 𝑧;  𝐫ᇱ் , 𝑧ᇱ; 𝜔) .        (S8) 

As seen in Eq. (S8), the final electron density matrix is a product of its initial density matrix and 

the effects of the optical excitations, identically to Eq. (S5). Meaning, the electron coherence still 

captures the coherence of the sample, but up to its initial coherence. In the momentum basis, by 

the convolution theorem, this statement corresponds to convolution of the initial electron’s 

momentum distribution and the sample’s momentum-response, as apparent in Eq. (S7). 
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S.2. The case of surface plasmon polaritons (SPPs) 

In this section, we analyze the case of interaction with SPPs. In subsection S.2.1 we analyze the 

density matrix in terms of coherence, proving Eq. (5) from the main text. In subsection S.2.2 we 

provide information regarding our simulation and theoretical fitting done in Fig. 2(d) in the main 

text. In subsection S.2.3 we provide the simulation parameters used for obtaining Fig. 2 in the main 

text. 

S.2.1 The coherence of the electron 

In this subsection, we analyze the density matrix of the electron in terms of its coherence. 

In a similar manner to classical optics [6], we can define the coherence of the electron wave: 

𝛾(𝐫், 𝐫ᇱ் ) = 𝜌ୣ(𝐫், 𝐫ᇱ் )ඥ𝜌ୣ(𝐫், 𝐫்)ඥ𝜌ୣ(𝐫ᇱ் , 𝐫ᇱ் ) 

Intuitively, this quantity measures the phase-correlation between the points 𝐫், 𝐫ᇱ்  on the electron 

density matrix. The electron’s spatial coherence is 1 (in absolute value) when the phases at these 

two points are completely correlated, and 0 when they completely uncorrelated. The correlation 

of phases determines, for example, the result of a double-slit experiment done with the slits at 𝐫், 𝐫ᇱ் ; complete correlation implies maximal interference (with visibility that depends on the 

diagonal terms of 𝜌ୣ) and vanishing correlation implies no interference.  

 In our scenario, where the optical excitations lie in a translation-invariant sample, the 

electron coherence is a convenient metric to analyze the post-interaction electron, and accordingly 

the interaction itself. As the optical excitations, the coherence is translation-invariant and can be 

obtained directly from the diffraction image of the electron. Let us derive this result. For 

readability, we omit the 𝜔 argument of 𝜌௘, but the derivation applies in the energy-filtered case as 
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well. We start from the definition of 𝛾(𝐫், 𝐫ᇱ் ) ,and write 𝜌ୣ(𝐫், 𝐫ᇱ் ) in the transverse momentum 

basis, using a Fourier relation. We exploit the fact that 𝜌ୣ is diagonal in the momentum basis, and 

derive Eq. (S9), which is identical to Eq. (6) from the main text: 

𝛾(𝐫், 𝐫ᇱ் ) = 𝛾(∆𝐫்) = 𝜌ୣ(∆𝐫்)𝜌ୣ(𝟎) = ∫ 𝜌ୣ(𝐤்)𝑒௜𝐤೅⋅∆𝐫೅ 𝑑𝐤்∫ 𝜌ୣ(𝐤்) 𝑑𝐤்                           (S9) 

where we used ∆𝐫் = 𝐫் − 𝐫ᇱ் . This expression resembles the Van Cittert-Zernike theorem [2] 

from classical optics.   

 

S.2.2 Fitting to experimental data 

 In order to validate our theory, we compare Eq. (S9) to previous experiments in the 

literature. The result of the comparison is depicted in Fig. 2(d) in the main text. For comparison, 

we used the experimental data from Fig. 3(c) in [7], presenting the electron spatial coherence after 

interacting with 15.5 eV plasmons in Aluminum (separating the spatial decoherence from the 

temporal decoherent due to the energy difference of inelastically-scattered electrons). The 

coherence values in the experiment are normalized to that in the zero-loss results [7], that is, we 

normalized the results to include electron preparation imperfections that can impair its coherence 

regardless of its interaction with the plasmons. Our derivations in subsection S.1.2, and specifically 

Eq. (S8), capture the limited electron coherence before the interaction, which also appears in [7].  

Our theoretical curve, colored in red in Fig. 2(d) in the main text, is simulated based on the 

experimental data given in Ref. [7]. In order to have realistic parameters of the material itself, 

which are necessary for computing its Fresnel reflectance coefficient (see Eq. (4) in the main text), 

we use the Drude model for the frequency-dependent permittivity and conductivity. The 
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parameters for the Drude model for Aluminum are taken from Ref. [5]. Using the Fresnel 

coefficients, we have computed the Green’s function (Eq. (4) in the main text), and eventually the 

electron’s density matrix (Eq. (5) in the main text). The coherence was obtained from the density 

matrix using Eq. (S9), as would be done in an experimental implementation of this method. 

S.2.3 SPP simulation Parameters  

In the results presented in the paper, including Fig. 2(b-c), we have used a 10 nm thick metallic 

slab, with permittivity obeying the Drude model and the following parameters: plasma frequency ℏ𝜔୮ = 8.5 eV and relaxation time of 𝜏 = 2 fs. Additionally, the electron kinetic energy was 300 keV, and the width of EELS energy filter was 0.05 eV. For wider energy filters, the bandwidth 

will convolve with the numerical results, e.g., broaden Fig. 2(b) vertically, and decrease the spatial 

coherence in Fig. 2(c). The range of energies used for Fig. 2(b) is 0 − 6.5 eV.     
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S.3. The case of nanoparticles 

In this section, we analyze the case of interaction with a nanoparticle. In subsection S.3.1 

we derive the density matrix of the electron after the interaction (Eq. (7) in the main text). In 

subsection S.3.2 we analyze the interaction in terms of the entanglement created between the 

electron and the optical excitations. In subsection S.3.3 we elaborate on the ability to extract and 

calculate the entanglement created in the interaction from standard experimental data. In 

subsection S.3.4 we provide the simulation parameters used for obtaining Fig. 3 in the main text. 

S.3.1 Derivation of the electron density matrix 

In this subsection, we derive the electron density matrix in case of interaction with a 

nanoparticle. We start from Eq. (S5) and set the electromagnetic Green’s function to that of a 

single dipole located in the origin. This Green’s function can be written as: 

𝑮ന(𝐫, 𝐫ᇱ, 𝜔) = 𝜔ଶ𝜇଴𝑮ന୤ୱ(𝐫, 𝟎, 𝜔)𝜶ന(𝜔)𝑮ന୤ୱ(𝟎, 𝐫ᇱ, 𝜔)                                   (S8) 

where 𝜇଴ is the magnetic permeability of the vacuum, 𝑮ന୤ୱ(𝐱, 𝒚, 𝜔) is the Green’s function of free 

space (𝜖(𝐫, 𝜔) = 1) and 𝜶ന(𝜔) is the frequency-dependent polarizability tensor of the nanoparticle. 

This Green’s function represents the process of the electron in 𝐫ᇱ that excites a dipole located in  𝐱 = 𝟎, which itself creates an electric field in 𝐫. The expression for 𝑮ന୤ୱ(𝐫, 𝐫ᇱ, 𝜔) can be written as 𝑮ന୤ୱ(𝐫, 𝐫ᇱ, 𝜔) = ቀ𝑰ധ + ଵ௞మ 𝜵ഥ𝜵ഥቁ 𝑔(𝑅), where 𝑰ധ is the identity tensor, 𝑘 = ఠ௖ , 𝜵ഥ is the gradient operator, 

and 𝑔(𝑅) = ௘೔ೖೃସగோ , with 𝑅 = |𝐫 − 𝐫ᇱ|. From these expressions, a straightforward calculation yields 

the different components of the Green’s tensor that can be excited by a z-direction dipole,  𝐺୤ୱೣ೥ =
−𝑘 ௞మ௫௭ସగ௞ఱோఱ 𝑒௜௞ோ(𝑘ଶ𝑅ଶ + 3𝑖𝑘𝑅 − 3) (and symmetrically for 𝑦), and 𝐺୤ୱ೥೥ = 𝑘 ଵସగ௞యோయ 𝑒௜௞ோ ቈ𝑘ଶ𝑅ଶ +
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(𝑖𝑘𝑅 − 1) − ௭మோమ ሾ(𝑘ଶ𝑅ଶ + 3𝑖𝑘𝑅 − 3)ሿ቉. Note that 𝐺୤ୱೣ೥, 𝐺୤ୱ೤೥ are 𝑧-anti-symmetric while 𝐺୤ୱ೥೥ is 

symmetric in 𝑧. These properties would be reflected in the electron’s density matrix.  

 We use Eq. (S8) for the Green’s function and its explicit form and calculate the density 

matrix from Eq. (S5). The result has a very similar form to Eq. (S8), and can be written as follows: 

𝜌ୣ(𝒓୘, 𝒓୘ᇱ , 𝜔) = 𝛼𝜋ଶ 1𝑐𝑆 𝜔ଶ𝜇଴𝛙(𝐫୘, 𝜔) ⋅ Im{𝛂ന(𝜔)} ⋅ 𝛙ᇱ∗(𝐫୘ᇱ , 𝜔)                     (S9) 

where 𝛼 is the fine-structure constant. The functions 𝛙(𝐫், 𝜔) = 𝜓்(𝑟𝑇, 𝜔)𝐫ො் + 𝜓௭(𝑟𝑇, 𝜔)𝐳ො and 𝛙ᇱ∗(𝐫ᇱ் , 𝜔) = 𝜓∗் ൫𝑟𝑇′ , 𝜔൯𝐫ොᇱ் + 𝜓௭∗൫𝑟𝑇′ , 𝜔൯𝐳ොᇱ denote the spatial wavefunction of the electron after 

interacting with an oscillating dipole with frequency 𝜔 in the transverse direction (𝜓்) or 𝑧 

direction (𝜓௭). The functions 𝜓்,௭ are the result of an overlap integral of the electron wavefunction 

and the electromagnetic field (of a transverse- or 𝑧- oriented dipole), as written in Eq. (S5). Since 

the Green’s function is spherically symmetric, but the overlap integral is along the 𝑧-axis only, the 

functions 𝜓்,௭ can be written in the following form: 

𝜓்(𝐫்) = 14𝜋 න 𝑘 𝑑𝑧 𝑒௜ ௖௩బ௞௭ 𝑘ଶ|𝐫்|𝑧𝑘ହ𝑅ହ 𝑒௜௞ோ(𝑘ଶ𝑅ଶ + 3𝑖𝑘𝑅 − 3)ஶ
ିஶ                            (S10) 

𝜓௭(𝐫்) = 14𝜋 න 𝑘 𝑑𝑧 𝑒௜ ௖௩బ௞௭  1𝑘ଷ𝑅ଷ 𝑒௜௞ோ ൥𝑘ଶ𝑅ଶ + (𝑖𝑘𝑅 − 1) − 𝑧ଶ𝑅ଶ ሾ(𝑘ଶ𝑅ଶ + 3𝑖𝑘𝑅 − 3)ሿ൩ஶ
ିஶ  (S11) 

where here 𝑅 = 𝑅(𝐫், 𝑧) = ඥ|𝐫்|ଶ + 𝑧ଶ is a function of 𝑧 (the integration variable), and we 

defined 𝑘 = ఠ௖ . Notably, the functions 𝜓்,௭  are dimensionless and depend on 𝐫் both explicitly 

(through |𝐫்|) and implicitly (through 𝑅). The similarity between the expressions of 𝐺୤ୱೣ೥, 𝐺୤ୱ೤೥ 
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and 𝜓், as well as 𝐺୤ୱ೥೥ and 𝜓௭, is apparent from the direct connection between the electric field 

that the electron produces and the way the electron wavefunction changes.  

We note several facts about 𝜓்,௭. First, both have azimuthal symmetry (depend only on |𝐫்|). Second, we can see the conjugation of the spatial variables 𝑧, 𝑅 to 𝑘 which leads that 𝑘 

determines the length-scale of the functions 𝜓்,௭. Third, the only dependence of these functions 

on the properties of the electron is through its velocity, 𝑣଴, inside the exponential term. As a result, 

different electron velocities “sample” different spatial Fourier-components of the electromagnetic 

field. The choice of different Fourier components by different electron velocities can be noticed 

also by the expressions of 𝐺୤ୱೣ೥, 𝐺୤ୱ೤೥, 𝐺୤ୱ೥೥. The functions 𝜓்(𝐫்), 𝜓௭(𝐫்) are depicted in Fig. 3(a) 

in the main text.  

 

S.3.2 Investigation of the entanglement 

In this subsection, we analyze properties of the interaction with nanoparticles in terms of 

the entanglement formed during the interaction. We start from the electron density matrix in this 

case (Eq. (S9)) and quantify the entanglement in different cases through the purity measure [3]. 

For the mathematical analysis, we note that in this case, the electron state can be regarded as a 3-

level system, instead of the representation offered in Eq. (S9) in 2 spatial dimensions. This 

“dimensionality reduction”, is possible due to the discrete number of different outcomes: the 

electron can be scattered by an 𝑥-, 𝑦- or 𝑧- dipole excitation, and for each excitation the electron 

(spatial) wavefunction is determined by Eq. (S10, S11). Using this approach, we use the bra-ket 

notation to represent the electron density matrix and calculate the necessary components for the 

calculation of the purity. 
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We transform the density matrix in Eq. (S9) to the bra-ket notation of a 3-level system. For 

that, let us define a three-dimensional vector basis, denoted as ห𝜓௝ൿ for 𝑗 = 𝑥, 𝑦, 𝑧, such that ൻ𝐫்ห𝜓௝ൿ = 𝜓௝(𝐫்). Specifically, this means that ⟨𝐫்|𝜓௫⟩ = 𝜓்(|𝐫𝑻|) ⋅ (𝐫் ⋅ 𝐱ො), and similarly for 𝑦, 

and ⟨𝐫்|𝜓௭⟩ = 𝜓௭(|𝐫𝑻|). Each |𝜓௝⟩ denotes the electron wavefunction after interacting with a 

dipole oriented in the 𝑗 direction. Although the basis ห𝜓௫,௬,௭ൿ is an orthogonal set (ൻ𝜓௜ห𝜓௝ൿ = 0 ⇔𝑖 ≠ 𝑗), this set, and thus also the density matrix 𝜌ୣ, is not normalized because it possess information 

about the probability of interaction for each dipole orientation. The fact that 𝜌ୣ is not normalized 

for all orientations, but to each orientation, is important for the entanglement calculation. Using 

this notation, we rewrite Eq. (S9) in the ket-bra notation,  

𝜌ୣ(𝜔) = ൤ 𝛼𝜋ଶ 1𝑐𝑆 𝜔ଶ𝜇଴൨ ෍ Im{𝛂ന(𝜔)}௜௝|𝜓௜⟩ൻ𝜓௝ห௜,௝ୀ௫,௬,௭                                   (S12) 

In Eq. (S12), the density matrix in the ห𝜓௫,௬,௭ൿ basis is exactly the imaginary part of the 

polarizability tensor, Im{𝛂ന(𝜔)}, up-to a global factor which accounts for global cross-section of 

the interaction. 

The connection between the matrices Im{𝛂ന(𝜔)} and 𝜌ୣ is not entirely straightforward. The 

matrix Im{𝛂ന(𝜔)} indeed dictate some properties of 𝜌ୣ, such as number of eigenstates. However, 

the exact numerical spread of the eigenvalues, which determines the numerical value of the 

entanglement, differs between Im{𝛂ന(𝜔)} and 𝜌ୣ. This difference arises from the difference in the 

weights of each axes 𝑥, 𝑦, 𝑧 according to the normalization of its basis vector, ⟨𝜓௜|𝜓௜⟩ = ห|𝜓௜|หଶ. 

In our setup, there is an azimuthal (𝑥-𝑦) symmetry in terms of the interaction, making ห|𝜓௫|หଶ =
ቚห𝜓௬หቚଶ = ห|𝜓்|หଶ ≠ ห|𝜓௭|หଶ. Thus, only 𝛂ന can break this azimuthal symmetry, for example in case 
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of a nano-rod oriented along the 𝑥-𝑦 plane. As a result, the transformation from Im{𝛂ന(𝜔)} to 𝜌ୣ 

does not affect the relative strength of the 𝑥, 𝑦 components, only their relative strength compared 

to the 𝑧 components. Therefore, we also understand that the eigenstates of Im{𝛂ന(𝜔)} are equal to 

the eigenstates of 𝜌ୣ, up to re-scaling of the 𝑥, 𝑦 components relative to the 𝑧 component. 

This analysis has several consequences. First, the number of non-zero eigenvalues of Im{𝛂ന(𝜔)} equals the number of non-zero eigenvalues of 𝜌ୣ (and of 𝜌ଶୣ). Consequently, the 

minimal electron purity is determined by the number of non-zero eigenstates of Im{𝛂ന(𝜔)}, which 

in our case relates to the geometrical dimension of the nanoparticle. Second, if Im{𝛂ന(𝜔)} has no 𝑧 components, then the matrices Im{𝛂ന(𝜔)} and 𝜌ୣ are exactly the same (up-to a pre-factor), both 

in eigenstates and eigenvalues. Third, by setting a different Im{𝛂ന(𝜔)} (e.g. by changing the 

geometry of the nanoparticle, rotating it, or choosing a different excitation energy), one can change 

the relative strength between the 𝑧- and the 𝑥, 𝑦- eigenvalues, thus varying the electron purity. A 

special consequence, presented in Fig. 4 in the main text, is that the electron purity depends on the 

energy of the dipolar excitation when both transverse (𝑥, 𝑦) and longitudinal (𝑧) components exists 

in the nanoparticle.  

 

S.3.3 Calculating the entanglement from experimental data 

In this subsection, we present how our formalism enables calculating the entanglement 

created in the interaction from electron intensity images. In the end of this subsection, we comment 

on possible generalization of this method to other scenarios in electron microscopy. 

We exploit our previous knowledge on the form of the electron density matrix 𝜌ୣ from Eq. 

(S12), as an incoherent sum of known wavefunctions (𝜓், 𝜓௭) with unknown coefficients 
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(Im{𝛂ന(𝜔)}). The electron purity, quantifying the entanglement created in the interaction, can be 

calculated from eigenvalues of 𝜌ୣ (see elaborated discussion in section S.4). In principle, these 

eigenvalues can be either measured directly, or calculated from a full reconstruction of 𝜌ୣ. From 

Eq. (S12), we see that it is convenient to work in the basis of {|𝜓௫⟩, ห𝜓௬ൿ, |𝜓௭⟩}, in which 𝜌ୣ is 

essentially a 3-by-3 matrix, whose elements have a known spatial form, and with unknown 

coefficients. Therefore, our approach is to calculate the eigenvalues of 𝜌ୣ based on our partial 

knowledge on its eigenstates, from standard electron intensity images. 

In our context, using our knowledge on the electron density matrix, the process of 

extracting the electron purity from a single electron image is equivalent to the process of extracting 

the coefficients of the matrix Im{𝛂ന(𝜔)} from that image. This matrix is composed of only 4 

independent parameters. To see why, we regard the nanoparticles as a 3D ellipsoid with general 

aspect ratios, oriented along a general direction. The ellipsoid is described by 2 aspects ratios (for 

example, 𝑧-axis to 𝑥-axis and 𝑧-axis to 𝑦-axis), and its orientation is described by 2 angles. This 

is the geometrical argument for the number of parameters. Another argument for the number of 

independent parameters of Im{𝛂ന(𝜔)}, more algebraic in nature, is that Im{𝛂ന(𝜔)} is a real-valued 

and symmetric matrix, which has 6 independent parameters; from that, we subtract 1 due to the 

symmetry of the interaction (and thus – the entanglement) to azimuthal rotations around the 𝑧 axis, 

and subtract 1 due to the fact that the determinant of 𝜌ୣ (and thus Im{𝛂ന(𝜔)}) does not affect the 

purity calculation (see Section S.4 for more details). Hence, this argument yields 4 independent 

parameters, exactly as the geometrical argument. 

Therefore, using these considerations, the purity of the electron can be calculated from a 

single electron image of the interaction, by fitting these 4 parameters to experimental data. 

However, additional knowledge on the shape of the nanoparticle helps further reducing this 
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number. For example, if the nanoparticle is known to be a nanorod in an unknown orientation, the 

number of free parameters to fit is only 2 (the angles of its orientation). More generally, standard 

experiments are done with some knowledge on the shape of the nanoparticle, such as aspect ratios, 

acquired using other imaging or fabrication methods. In this case, the only unknowns are again the 

2 rotation angles. Therefore, in the common cases the purity can be found by fitting a single 

electron image with only 2 parameters. 

The opposite direction should be discussed as well. In this approach, we assume full 

knowledge and control over Im{𝛂ന(𝜔)}, and it is the spatial form of {|𝜓௫⟩, ห𝜓௬ൿ, |𝜓௭⟩} that we are 

after. Here, we can construct the spatial form of each function by an appropriate experiment – for 

each type of nanoparticle, aligned such that Im{𝛂ന(𝜔)} is diagonal (thus so as 𝜌ୣ), measure the 

resultant electron image, obtaining ห𝜓௝(𝐫்)หଶ for 𝑗 = 𝑥, 𝑦, 𝑧. Additionally, if desired, the phase of 

this function can be measured using electron holograph or other interference experiments.  

These considerations and experimental procedures are a direct consequence of our 

formalism, linking the electron images to its quantum properties such as its entanglement with the 

plasmonic nanostructure, quantified by its purity. Furthermore, it could potentially be applied to 

more complex optical environments, such as larger plasmonic structures (supporting modes in 

additional to the dipole modes), with the same theoretical analysis. The difference would be the 

types and shapes of excitable modes, for each the theoretical cross section and spatial pattern must 

be calculated in advanced.  

There are additional physical observables that can be measured and are linked to the 

formation of electron-plasmon entanglement. Apart from direct measurements of both parties 

(mentioned in the main text), there are some further measurements that can be made on the electron 
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itself, characterizing its decoherence, from which the created entanglement can be calculated. For 

example, the process of nanoparticle-parameter fitting can be done on additional images other than 

the electron intensity image, for example its coherence images (presented in Fig. 3(b) in the main 

text), its diffraction images (similarly to the case of SPPs), and using any other optical 

manipulation done on the electron wave.  

In fact, in terms of purity calculations, the coherence measurement has an intrinsic 

advantage over calculations from intensity images: in some cases, the coherence of the electron 

does not depend on the rotation of the nanoparticle, only on its aspect ratios (i.e. the relative size 

of the eigenvalues of Im{𝛂ന(𝜔)}). Specifically, as explained in the caption of Fig. 3(b) in the main 

text, interaction with a nanorod does not create any entanglement, and a coherence measurement 

of the electron in this case would yield perfect coherence regardless of the nanoparticles’ 

orientation. Therefore, it could be beneficial (yet not always mandatory) to have a coherence 

measurement of the electron, in addition to its intensity image, to measure the purity. This approach 

gets more similar to the approach of full quantum state reconstruction done in finite quantum 

systems, and its exact manifestation might depend on the available optical modes. 

We note that in the aspects of experimental feasibility of our proposed methods, the 

required resolution for this kind of experiments depends on many parameters, such as the spatial 

resolution, the scattering probability, the electron energy spread, and the EELS resolution. Yet, the 

main requirement from these parameters is the ability to faithfully distinguish between electron 

images that result from transverse nanoparticles (𝑥𝑦 disk) and longitudinal ones (𝑧 rod), and 

between the 𝑥 and 𝑦 directions. Generally, the need for a geometrical knowledge sets a requirement 

on the spatial resolution of the detector. As stated in Section S.3.1, the spatial images of the energy-
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filtered electron scales as the excitation wavelength, which means that higher wavelengths can be 

chosen to match this requirement on the spatial resolution.  

 

S.3.4 nanoparticle simulation parameters  

In the results presented in the paper, we have used a nanoparticle of radius 10 𝑛𝑚, relative 

permittivity of −30 + 5𝑖, and electron energy of 200 keV, post-selected for energy loss of 5 eV 

with zero filter bandwidth. For wider energy filters, the bandwidth will convolve with the 

numerical results, e.g., smear the intensity images of Fig. 3(a) and, and decrease the spatial 

coherence in Fig. 3(b).  
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S.4 The purity of the electron in a general scenario 

In this section, we evaluate the purity of the electron after interacting with optical 

excitations in a general scenario. The main focus here is on the behavior of the purity under 

different “cardinalities” of the excitations’ spectrum, that is, whether the electron interacts a 

discrete set of excitations or a continuous one. The number of available excitations to excite 

determines the number of non-zero eigenvalues of the electron density matrix, which affects its 

purity. Although the purity itself is affected by the relative magnitude of the non-zero eigenvalues, 

we find that the purity can vanish altogether when there is a continuum of excitations, 

regardless of the relative excitation strengths. In particular, this means that the purity of the 

electron interacting with SPPs is zero, and positive in the case of nanoparticles. 

Being able to connect the purity with the excitation dimensionality has several 

experimental implications. The purity of the electron is a measure of the electron’s overall 

coherence. Therefore, an electron exciting a continuum of resonances would have a greatly-

impaired coherence, compared to an electron exciting a discrete amount of resonances. The gap in 

coherences could impair the ability to use the electron as a quantum particle, for example for 

measurements which are based on its spatial or temporal coherence. 

This statement is intuitive in the case where energy-filtering is not used: having a 

continuous energy distribution of the electron (by having continuous distribution of resonance 

energies) should decrease its coherence. Equivalently, in classical optics a bandwidth of 

frequencies decreases wave coherence. However, in the quantum case of the electron, the 

statement holds even for single-frequency electron, i.e. even after energy-filtering. As a result, 

energy filtering will not always “save” the electron coherence after interaction. For example, in 

the SPPs case the purity is always zero, even after energy-filtering. 
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 To show the purity analysis mathematically, we write the post-interaction electron density 

matrix in a diagonal form 𝜌ୣ = ∑ 𝑐௜|𝑖⟩⟨𝑖|௜ , where the 𝑐௜-s are the eigenvalues and the {|𝑖⟩} are the 

corresponding eigenstates. The eigenvalues and states are determined by the specific optical 

environment, but for this derivation we shall keep them general. The purity can be calculated 

directly from the eigenvalues of 𝜌ୣ, in the following way (see S.3.2): ୘୰൫ఘ౛మ൯୘୰మ(ఘ౛). Using the general 

form of 𝜌ୣ, the purity can be written as ∑ ௖೔మ೔(∑ ௖೔೔ )మ.  

In the continuous case, the summation over the eigenvalues turns into an integral. In the 

case of an interaction with an infinite surface, there is a continuum of directions of emission of 

surface plasmons, and the purity then goes to 0.  

Let us investigate the purity in the discrete and continuous cases. It is easy to see that for a 

finite number of non-zero eigenvalues (𝑐௜-s), the purity in the discrete version is strictly larger than 

zero. Consequently, an electron interacting with a finite amount of modes always keeps some of 

its purity. As discussed in the main text, this larger-than-zero purity usually means that the electron 

maintains a larger area of spatial coherence (see Fig. 3 in the main text). 

To summarize this discussion, we have shown that fundamentally an electron interacting 

with a surface of SPPs has zero purity, even after energy filtering. This claim is related to the 

fact that the plasmons have a continumu of propagation angles. Equivalently, this intrinsically 

relates to the dimensionality: two dimensions provide a continuum of modes. i.e., even after 

filtering the interaction for a single energy, there is still a continuum of modes corresponding to 

the momentum direction, which is manifested in 𝜌ୣ as a continuum of eigenvalues that yield zero 

purity. In contrast, a one dimensional structure, like a nanowire, can have two propagation 

directions and thus a finite purity value. It remains to be seen whether any infinite structure in 2D 



24 
 

and 3D will necessarily have a zero purity, or whether certain resonance structures could have a 

finite value. 
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