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1. Numerical simulation of the thermal effect 
As described in the main text, our nominally 10 µm diameter, 260 nm thick silicon microdisk 

is supported at the center by a 2 µm thick silica post. The diameter of the top and bottom surface 

of the post defined by the hydrofluoric acid etching process is measured to be ≈ 1.5 µm and ≈ 

2.2 µm. The whole setup is in an air environment. 

 In the simulation, an input power of  ≈ 0.1 mW is applied at time zero to the rim of the 

microdisk where the optical modes are located. Figure S1 (a) shows the temperature distribution 

of the system at the thermal equilibrium. The post is the main source of thermal impedance, while 

the Si substrate has high-enough thermal conductivity to be nearly isothermal. The effect of the 

cantilever on the simulation results is less than 2%, however, for the accuracy, we also included 

the cantilever in the model. The time-domain thermal simulation result is presented in Figure S1 

(b). By fitting the curve with = ′ + Δ , we obtain the thermal response time  ≈ 7.0 µs, and κ =  ≈ 1.5 × 105 K/W. = 293	K is a constant offset.  

  
Figure S1. Simulated thermal response of the silicon microdisk. (a). Thermal distribution on the 

microdisk at equilibrium. (b). Dynamic response of the disk to the application of a known thermal 

load at the periphery. 

2. Extraction of thermal time constant via intensity modulation 
As thermal time constants in nanophotonic resonators may be several microseconds or longer, 

frequency modulation via phase electro-optical modulators (EOM) requires deep phase 

modulation that is challenging to implement.  Therefore we implement a method that extracts the 

thermal time constant based on much more easily achievable intensity modulation,. The method 



relies on the interplay between the optical response and the thermodynamics in nanophotonic 

resonators via thermo-optical effect. As shown in Figure S2 (a), if the input optical intensity is 

reduced by Δ , the transmission intensity at the resonance (red dot) will first reduce to the scaled 

solid blue line quickly, and then slowly decay to the dashed blue line due to the thermo-optical 

tuning of resonance. Note, Fig. S2 (a) exaggerates the intensity modulation for a better 

presentation, the actual modulation is just a perturbation (Δ ≪ ). The tuning-induced variation 

of the transmission can be simply understood, as that the decrease of intensity lowers the 

temperature in the resonator, shifting the resonance wavelength by Δλ to a lower wavelength. The 

resonance shift leads to extra intensity change proportional to Δλ. Furthermore, Δλ is proportional 

to  based on Eq. (2). Considering the two parts, we have: = + S1  

where  is the intensity variation at the resonance due to intensity modulation Δ ,  and  are 

two proportionality constants,  is the temperature variation in the nanophotonic resonator and it 

can be expressed by the thermodynamic equation: Δ = −1 Δ − 2  

where  is the thermal time constant and we express the temperature change Δ  in the units of 

intensity change  for simplicity of notation (Δ =  defines the steady state relationship of 

temperature on intensity change). Finally, we write the intensity modulation as harmonic drive, 

and the resulting intensity and temperature changes are also in the harmonic form: Δ =Δ =Δ = 3  

 By applying Eq. (S3) to (S1) and (S2), we obtain the amplitude  as: = + 1 + 4  

At ≫ 1/ , the thermodynamics cannot follow the quick modulation, so the thermal tuning 

effect (second term in Eq. S1) is negligible, = = . At ≪ 1/ , the resonator is always at 

equilibrium, therefore, the amplitude of intensity is affected by the thermal effect: = += + . Since  and  can be measured individually, Eq. (S4) is simplifier to: = + 1 + 5  

 In practice, rather than using a dedicated amplitude-modulating EOM, we have used a 

phase EOM to achieve amplitude modulation. This was possible due to the combination of the 

EOM’s polarization-dependent phase modulation strength and the polarization-dependent fiber to 

photonic waveguide coupling. When the EOM input polarization is deliberately misaligned from 

the EOM principal axes and the EOM polarization principal axes are in turn misaligned from the 

on-chip waveguide input coupler axes, the TE and TM modes in the waveguide both acquire 

amplitude modulation. Only TM mode is coupled to the optical cavity modes under consideration, 

therefore the TE component is just a constant modulated intensity background independent from 

. Moreover, due to energy conservation, the intensity of TE is out of phase from the TM signal, 

providing a negative background −  to the in-phase components of the phase sensitive readout. 

Therefore, the overall readout is: = + 1 + 6  
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