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1. WINDOW FUNCTION IN SPECTRAL DOMAIN

A direct calculation of the XCT depth structure, r(z), from the
measured reflectivity, r(κD), leads to strong Fourier artifacts.
These are caused by steep edges at the upper and lower bound-
aries of the measured spectrum, κD,max and κDmin. For suppres-
sion of these artifacts, a window function,

W(κD) =


I0

[
β

√
1−
(

2(κD−γ)
η

)2
]

I0(β)
for κD,min ≤ κD ≤ κD,max

0 else
(S1)

is used. Here, I0 is the modified Bessel function of the first kind,
η = κD,max− κD,min the bandwidth, γ = (κD,max + κD,min)/2 its
center. The width of the window is given by the measured range
of κD and the damping parameter, β. Larger β means a smaller
window and consequently a better suppression of artifacts but
lower depth resolution. The definition of the window function
in frequency domain, W(ω), is analogous to the wave vector
domain.

2. FILTER FUNCTION IN THE TIME DOMAIN

As a filter function in time domain, Fj(t), a rectangular function

Fj(t) =


0, t < t1

1, t1 ≤ t ≤ t2

0, t > t2

(S2)

is used. The boundaries, t1 and t2, need to be chosen carefully
to filter the reflections of single interfaces.

3. ELIMINATION OF THE SPECTRAL WINDOW FUNC-
TION

After performing the isolation of a single interface by a truncated
Fourier transformation the spectral window function needs to be
eliminated in order to obtain the interface’s reflectivity. This can
be achieved by simply dividing through the window function,
W(ω), if some limitations are considered. The window function
can be eliminated through a simple division after filtering and
Fourier transformation, if

rF
j (ω) ≈ reff

j (ω) · eiOω0 (ω) ·W(ω). (S3)
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Actually, the filtered signal is

rF
j (ω) = FT ω,t

[
Fj(t)

]
~
[
reff

j (ω) · eiOω0 (ω) ·W(ω)
]

, (S4)

after zero-shift and Fourier transform into ω-domain. Equation
(S3) is fulfilled, if the filtering in time domain can be approxi-
mated as

rF
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1
4π2 Fj(t) ·
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FT −1
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This is the case, if the convolution of the effective reflectivity,

FT −1
ω,t

[
reff

j (ω)
]
, the spectral window, FT −1

ω,t

[
W(ω)

]
and the

dispersion terms, FT −1
ω,t

[
eiOω0 (ω)

]
, is assumed to be negligible

outside of the filter, Fj(t). Such a filter function can be chosen,
if the linear phase shift between interfaces is larger than these
broadening terms. Consequently, the minimum distance be-
tween two interfaces that is needed to successfully perform the
filtering, depends on the spectral behaviour of these interfaces.
For instance, a steep absorption edge causes a broad signal in
time domain, and would therefore require a large distance be-
tween adjacent interfaces. The broadening due to the spectral
window, W(ω), can be controlled by choosing an appropriate
damping parameter, β.

4. MODEL FOR THE LIGHT-MATTER INTERACTION

The overall, complex reflectivity, r(ω), of a sample can be written
as the sum over reflections at the individual interfaces

r(ω) =
N

∑
j=1

reff
j (ω)eiΦj(ω). (S6)

Here, a phase shift, Φj(ω), describes the propagation in the sam-
ple, while the effective reflectivities, reff

j (ω), contain reflection,
transmission and absorption. The frequency dependency of
Φj(ω) and reff

j (ω) accounts for the full dispersion in the sample.
Multiple reflections are neglected.

To relate the factors in equation (S6) to the refractive index
distribution in the medium, the z-component of the wave-vector,
κj, in each medium j, needs to be calculated

κj(ω) = κ′j(ω) + iκ′′j (ω) =
2ω

c

√
n2

j (ω)− cos2(α) , (S7)

where α is the angle of incidence with respect to the surface and
nj is the complex refractive index in the corresponding layer.
The field reflectivity, r(ω), of the whole stack is then given by

r(ω) =r01(ω)+ (S8)

N

∑
j=2

r(j−1)j(ω) ·
[

j−1

∏
l=1

θl(l−1)(ω)θ(l−1)l(ω)︸ ︷︷ ︸
transmission

·

e−2κ′′l (ω)(zl+1−zl)︸ ︷︷ ︸
absorption

· e2iκ′l(ω)(zl+1−zl)︸ ︷︷ ︸
dispersion

]
.

The transmission θij and the reflectivity rij of the isolated inter-
face between the layers i and j can be obtained with the Fresnel
equations:

TE-polarization TM-polarization

rij =
κi − κj

κi + κj
rij =

ε jκi − εiκj

ε jκi + εiκj

θij =
2κi

κi + κj
θij =

√
4εiε jκi

ε jκi + εiκj
, (S9)

where ε j is the complex susceptibility of the medium j. The
index i = 0 denotes the medium on top of the sample, i.e. its
cladding, whereas index N indicates the substrate.

By comparing equations (S6) and (S8) one finds the equiva-
lences

Φ1(ω) = 0 , Φj>1(ω) =
j−1

∑
l=1

2κ′l(ω)(zl+1 − zl) (S10)

reff
1 (ω) = r01(ω)

reff
j>1(ω) = r(j−1)j(ω)

j−1

∏
l=1

θl(l−1)(ω)θ(l−1)l(ω)e−2κ′′l (ω)(zl+1−zl).

The phase, Φj, is the sum over the propagation in all layers on
top of the interface with the distance zj to the surface.

If the wave-vector in all media is now approximated by the
wave vector κD in the dominant medium, the phase term simpli-
fies to Φj = κDzj.

Interface roughness can be introduced by the Nevot-Croce
Factor [1]

ρ(j−1)j = e−2κj−1κjσ
2
j . (S11)

The roughness is given by the root-mean-square value σj of the
interface. Roughness is included in the model by replacing the
reflectivity of the plain surface, r(j−1)j, in equation (S10) with
the reflectivity of the rough surface:

rrough
(j−1)j = ρ(j−1)jr(j−1)j (S12)

5. CALCULATION OF THE SAMPLE REFLECTIVITY
FROM THE MEASURED SPECTRUM

The sample reflectivity, R, is calculated from four measured
reflection spectra. A sketch of this data processing is shown
in figure S1. The measured spectrum, SM, is the product of
the sample reflectivity, R, and the source spectrum, SSource. It
follows:

R =
SM

SSource
. (S13)

The source spectrum is obtained by measuring the reflected
spectrum of a reference material, Sref, with known reflectivity,
Rref:

Ssource =
Sref
Rref

. (S14)

The reflected spectrum of the sample and the reference is mea-
sured for two different filter configurations, in order to extend
the measurable spectral region of XCT. The spectral region cov-
ered in a single exposure is defined by the transmission band-
width of the transmission filter used. For our experiment Al and
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Fig. S1. Sketch of the calculation of the sample reflectivity
from four measured spectra: The sample is measured with
two complementary filter configurations (Al and Zr). These
are combined to cover a broad spectral range. The source spec-
trum is characterized by a reference measurement at a material
with known reflectivity. In our case we used TiO2 as a refer-
ence and calculated the reflectivity with dispersion data from
[2]. The sample reflectivity is calculated according to equation
(S13).

Fig. S2. The source spectrum obtained with aluminum (blue)
and zirconium (red). Here, the source spectrum is defined as
the spectrum incident on the sample, which includes the trans-
mission through the filters. Consequently, an offset between
the spectra is observed, due to the different filter apertures and
transmissions. The black dotted line shows at which photon
energy the two spectra are merged.

Zr transmission filters provide complementary transmission
windows. The source spectrum for both filter configurations is
shown in figure S2. The spectrum is quasi-continuous, but still
contains modulations from the high harmonic generation pro-
cess. The offset between the two parts is caused by the different
filter transmissions and apertures. The source spectrum, SSource,
and the sample spectrum, SSample, are obtained by merging the
spectra obtained for the different filter configurations. They are
shown for sample 1 (buried Ti and SiO2 layers in silicon) in
figure S3a). When the sample reflectivity, R, is calculated ac-
cording to equation (S13), the contribution of the different filter
transmissions cancel out. The sample reflectivity for sample 1 is
shown in figure S3b).

a)

b)

Fig. S3. a) Source spectrum (blue) and sample spectrum (red)
of sample 1 in the whole usable photon energy range: The
black dotted line shows were the contributions from both fil-
ter configurations are merged. b) The reflectivity of sample 1
is obtained from the source spectrum and sample spectrum
(shown in figure a)).

6. SAMPLE DESIGN

Fig. S4. Sketch of the samples: The design values for the layer
thicknesses are shown. For the naturally grown silicon oxide
layers, these are only estimates.
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Fig. S5. The retrieved reflectivity from simulated data is shown for the cases with and without the neglection of multiple reflections
inside the sample, |rF

neg| (solid blue) and |rF
mult| (dashed blue). The difference function, |rF

neg| − |rF
mult| is shown in dotted black. The

simulated structure corresponds to the design of sample 1 (figure S4) without assuming any interface roughness.

7. MULTIPLE REFLECTIONS

In the model presented in section 4 of this supplementary, multi-
ple reflections inside of samples are neglected. This assumption
was tested by performing the algorithm described in section
2.B on simulated data with and without including multiple re-
flections. The design structure of sample 1 was used for this
purpose (see figure S4). No roughness was assumed, since this
would decrease the interface reflectivity and therefore the rela-
tive weight of multiple reflections. Consequently, an upper limit
for the contributions of multiple reflections was obtained. Figure
S5 shows the filtered effective reflectivities retrieved from simu-
lated data assuming multiple reflections inside the sample, rF

mult,
and neglecting multiple reflections, rF

neg. For the simulation with
multiple reflections the transfer-matrix formalism for stratified
media was used [3]. For the simulation neglecting multiple re-
flections, the reflectivity was calculated according to equation
S6. The difference between the two cases, |rF

neg| − |rF
mult| is also

shown for each structure. The deviation is generally higher at
lower photon energies, but is typically 2-3 orders of magnitude
smaller than the retrieved reflectivities. Consequently, the ne-
glection of multiple reflections is reasonable for the investigated
samples.

8. THE EFFECTIVE REFLECTIVITY FOR A SUPERPOSI-
TION OF INTERFACES

The superposition of two adjacent interfaces reff
j and reff

j+1 can be
treated as a single interface. Following equations (S6) and (S10),
the reflection of this single interface, reff

j′ , can be described as

reff
j eiΦj(ω) + reff

j+1eiΦj+1(ω)

=
(

reff
j + reff

j+1ei2κ′j+1(ω)(zj+1−zj)
)

︸ ︷︷ ︸
reff

j′

eiΦj(ω). (S15)

The associated propagation phase is the one corresponding to
the first of the two interfaces, Φj.

9. REPEATABILITY

In the following, the repeatability of the algorithmic reconstruc-
tion of the filtered effective layer reflectivities, rF(ω), is studied.
Here, the major challenge is the stability of the phase retrieval
of the sample structure. As explained in [4] and its supplemen-
tary, the phase-retrieval is a three-step algorithm with a random
initial phase guess. All three steps rely on iterations between
frequency and time domain using Gerchberg-Saxton [5] and
Hybrid-Input-Output [6] constraints, which are well established
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Fig. S6. Repeatability of the measurement: The results for multiple phase retrieval runs are shown (dotted black).For further analy-
sis and the comparison to the simulated data, the results with the smallest phase retrieval error were chosen.

for the case of two-dimensional phase retrieval. Because of the
lack of symmetries in the measured one-dimensional signal, the
direct application of these constraints will not lead to conver-
gence. Therefore, tighter constraints are initially applied in both
domains to obtain an initial guess for the amplitude in the depth
domain. The additional constraints are then loosened stepwise,
ultimately yielding the complex signal in the time and frequency
domain, with a compact support as the only constraint left in
the final step. In each step the convergence of the phase retrieval
can be monitored using the error function

e =

∫
|r′mW (ω)− r0

W(ω)|2dω∫
|r0

W(ω)|2dω
, (S16)

where r
′m(ω) is the amplitude in spectral domain after the m-th

iteration and

r0
W(ω) =

{
rwwsym (ω), step 1
W(ω) ·

√
R(ω), step 2 and 3

(S17)

the input value of the amplitude for each step. This corresponds
to a symmetrization of the input spectrum, rwwsym (ω), for step 1
and the square root of the measured intensity reflectivity, R(ω)
for step 2 and 3, weighted with the window function W(ω). In

the original work by Fuchs et al. the phase retrieval was found
to provide a stable reconstruction of the sample structure. This
is achieved by running the phase retrieval multiple times and
selecting the result with the minimal error, e, to neglect cases
where the algorithm converges to the wrong solution due to the
initial random spectral phase. The current work is even more
senstitive to the result of the phase retrieval, because the reflec-
tivity of individual interfaces is investigated in addition to the
spatial sample strucuture. To discuss the repeatability of this
approach , the results for the filtered effective reflectivity, rF, for
eleven phase retrieval runs are shown for sample 1 in figure S6.
The red curves show the reconstructed reflectivities with the low-
est phase retrieval error and are the ones used for the discussion
and comparison to simulated data in the manuscript. The devia-
tion between subsequent runs is highest for the interfaces with a
low reflectivity. Additionally, deviations occur predominantly
at the edges of the spectral range. Consequently, the deviations
can be attributed to the presence of noise in the retrieved sample
structure, r(t). This leads to errors for the interfaces with the
lowest signal-to-noise ratio, i.e., the lowest reflectivity, and to
stronger Fourier transform artifacts in the Fourier filtering proce-
dure. A more stable source and a better reference measurement
of the source spectrum will enable better signal-to-noise ratios
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and therefore also would lead to an improved repeatability of
the algorithmic reconstruction.

10. SPECTRAL RESOLUTION

The spectral resolution of the retrieved spectral reflectivity of
each layer is defined by the width of the filter in time domain.
Theoretically this is limited by the distance between two adja-
cent interfaces. In the current state, very tight filter constraints
turned out to be necessary in order to prevent distortions of
the reconstructed spectral reflectivity due to noise in the time
domain. Table S1 shows the width of the filter used for each
interface and the resulting spectral resolution. Here, the reso-
lution is defined as the Full-Width-Half-Maximum (FWHM) of
the Fourier transform of the filter function. In adddition, we
investigated the best possible spectral resolution for each inter-
face of each sample. For this purpose we simulated the samples
with the matrix method and found the maximum filter width
and its corresponding spectral resolution, which is referred to as
theoretical resolution. These are also shown in table S1.

Table S1. The resolution of the effective reflectivity, reff(ω), are
shown for each reconstructed structure. For comparison, the
maximum theoretical resolution that can be achieved for each
structure is also computed and shown here.

Structure exp. resolution theor. resolution

in eV in eV

Sample 1: SiO2 9.3 1.2

SiO2 12.2 7.1

Ti 7.5 4.0

TiO2 9.4 3.0

Sample 2: SiO2 14.1 1.2

Ag 8.2 3.7

TiO2 6.3 2.7
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