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Abstract: This document provides supplementary information to “Acousto-optic modulation
of a wavelength-scale waveguide.” It contains a derivation of the coupled mode equations,
interaction rates, and mode orthogonality relations; a generalized analysis of the dynamics
including the loss and dephasing with measurements of the optical and RF bandwidth; details on
how the acousto-optic multiplexer is characterized; a discussion on the RF power-handling of the
piezoelectric transducer; and details on the inference of the interaction rate, 6.
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1. Optomechanics in a waveguide

For the ease of the reader, in this appendix we derive the coupled mode theory in Eq. (1) in the
manuscript including the form for the coupling coefficient Eq. (3) fromMaxwell’s equations. The
coupled mode equations used here are essentially the same as those derived by Yariv in 1973 [1]
and are a special case of the equations of motion used in the Brillouin scattering literature. In the
Brillouin literature, the dynamics of the mechanical field 1 is on equal-footing with the optical
fields 08 . Here, as is appropriate for an acousto-optic modulator, we assume a strong mechanical
drive such that 1 is approximately unaffected by the optical fields. 1 appears as a non-dynamical
parameter in the equations of motion for 08 .

For Brillouin scattering, Sipe and Steel provide a derivation of the coupled mode theory starting
with the Hamiltonians for elasticity, electromagnetism, and their parametric optomechanical
coupling [2]. This approach allows them to derive a fully quantum theory. Wolff et al. derive the
classical coupled mode theory from the second-order differential equations of motion for the
electric field and mechanical displacement field [3]. Our approach is similar to a special case of
that of Wolff et al. but is built off the first-order differential form of Maxwell’s equations.

1.1. Coupled-mode theory from Maxwell’s Equations

Maxwell’s equations which generate the motion of the field

∇ × E = −mC`H (1)
∇ ×H = mCYE (2)

can be expressed compactly
∇ × 8fHΨ = mCΠΨ (3)

by defining the two-component field vector

Ψ =
©«
E

H
ª®¬ (4)



and the matrix

Π =
©«
Y 0

0 `

ª®¬ . (5)

A waveguide with continuous translation symmetry along I has solutions of the form

Ψ (C, G, H, I) = k (G, H) 48VI−8lC . (6)

For a given l, the mode profile k (G, H) and wavevector V solve the eigenvalue problem(
∇⊥ × 8fH + 8VÎ × 8fH + 8lΠ

)
k = 0 (7)

following from Eq. (3).
The modes of a waveguide are orthogonal under two inner products as shown in Sections 1.3

and 1.4. Consider two solutions with profiles k8 and k 9 and wavevectors V8 ≠ V 9 . If Π is
Hermitian, i.e., Π = Π†, the profiles are power-orthogonal

−2P8 9 =
∫

d� k∗8 · ẑ × 8fHk 9 (8)

= 0 (9)

where ẑ = ( Î, Î)>. In terms of the fields,

P8 9 =
1
2
Î ·

∫
d� e∗8 × h 9 + e 9 × h∗8 (10)

where e (G, H) and h (G, H) are the electric and magnetic field profiles, respectively. When 8 = 9 ,
this is the z-component of the time-averaged power. Similarly if Π = Π∗ and [fI ,Π] = 0, the
profiles are also energy-orthogonal

2E8 9 =
∫

d�k∗8 · Πk 9 (11)

= 0 (12)

where
E8 9 =

1
2

∫
d� e∗8 Ye 9 + h∗8 `h 9 (13)

is the energy density along I when 8 = 9 .
The modes of the waveguide give us a basis in which we can express an arbitrary harmonic

solution. Now we show, following from our orthogonality relations, that this basis diagonalizes
the dynamics yielding a system of independent telegrapher equations. We are primarily interested
in the dynamics of waves in a narrowband about l. In this case, we can decompose the field in
our basis of waveguide modes

Ψ (C, G, H, I) =
∑
8

08 (C, I) k8 (G, H) 48V8 I−8lC (14)

and find the dynamics of the coefficients, or “envelopes,” 08 (C, I). The constraint on the bandwidth
of 08 (C, I) is the “slowly varying envelope approximation.” Sipe and Steel describe how higher
order corrections to the field can be included in the dynamics [2]. Eq. (14) has a sum over discrete
bands but can be generalized to include an integral over a continuum of states, like the radiative
modes in the air surrounding our LN waveguide.



Each of the modes k8 exp (8V8I − 8lC) solves Maxwell’s equations and so, if we expand Eq. (3)
in this basis, only the derivatives acting on the coefficients 08 (C, I) remain. Acting on each side
with

∫
d� k∗

8
·, we use our orthogonality relations to find the equation of motion for 08

(−2P88mI − 2E88mC ) 08 (C, I) = 0. (15)

Defining the group velocity E8 ≡ P88/E88 , we can re-express this as(
E−1
8 mC + mI

)
08 (C, I) = 0. (16)

Finally defining a vector a with components 08 and matrix v with diagonal component E8 , we
have (

v−1mC + mI
)

a (C, I) = 0. (17)

In these equations, light in each mode propagates at the mode’s group velocity. In the next
section, we incorporate physics which modulates and couples the modes.

1.2. Perturbative coupling and inter-modal scattering in optomechanics

Many of the effects in parametrically driven systems and nonlinear optics can be captured in
the coupled mode theory by including a polarization drive field to the RHS of the equations [1].
Optomechanics, electro-optics, and thermo-optics are all examples of parameteric modulation in
which the drive field comes from perturbing the material Π→ Π + XΠ such that(

E−1
8 mC + mI

)
08 (C, I) = −

∫
d�

(
k14

8lC−8V1C
)∗ · mCXΠk

2P88
. (18)

For optomechanics, a mechanical field u perturbs Y such that

Y → Y + XuY · u. (19)

The perturbation has a radiation pressure term that is delta-distributed on boundaries between
dielectrics m' [4] and a photoelastic term [5]

XuY · u =
(
ΔY�q − YΔY−1Y�⊥

)
(u · =̂) Xm' (20)

− Y · ?S
Y0
· Y. (21)

Here =̂ is normal to the boundary m' pointing from dielectric 1 into dielectric 2; ΔY and ΔY−1 are
Y2 − Y1 and Y−1

2 − Y
−1
1 ; �⊥ and �q project the field perpendicular and parallel to =̂, respectively;

? is the photoleastic tensor; and (8 9 = (m8D 9 + m 9D8)/2 is the strain in the deformed medium.
With our expression for the perturbation XΠ for optomechanics, we turn our attention to the

case treated in the manuscript: coupling between the TE0 mode with amplitude 00 and the TE1
with amplitude 01.

Only phase-matched interactions contribute constructively over long interaction times and
distances. Consider the mechanical wave

u (C, G, H, I) =
√
Φ−1

m

(
1u (G, H) 48 I−8ΩC + c.c.

)
(22)

propagating along +I. The amplitude 1 is taken to be real and constant. The mode is flux
normalized where Φm = Pm/ℏΩ such that |1 |2 is the phonon flux with units of Hz. If the



mechanical mode phase-matches the TE0 and TE1 modes, i.e., l0 = l1 + Ω and V0 = V1 +  ,
Eq. (18) for the TE0 amplitude becomes(

E−1
1 mC + mI

)
00 (C, I) = −8601101 (23)

with

601 = −
l0
2

∫
d� e∗0 · XuY · u · e1

P00
√
Φm

. (24)

The RHS describes the action of the co-propagating anti-Stokes process. Similarly, the co-
propagating Stokes process drives the 01 mode(

E−1
1 mC + mI

)
01 (C, I) = −86101

∗00 (25)

with

610 = −
l1
2

∫
d� e∗1 · XuY · u∗ · e0

P11
√
Φm

. (26)

If we flux normalize the optical modes P8 = ℏl8 and choose the phase of the mode profiles such
that 6 ≡ 601 = 610, we arrive at (

v−1mC + mI
)

a = −861fGa (27)

for 1 = 1∗. This is Eq. (1) in the manuscript. By normalizing by flux, the operator on the RHS of
Eq. (27) is anti-Hermitian and therefore the dynamics generated by it are unitary. That means
photons are scattered between the two modes, conserving the total photon number. This is the
Manley-Rowe relations for the processes considered.
The same formulation is readily adapted to describe other traveling-wave interactions such

as electro-optic modulation and non-linear interactions by making a different choice for XΠ or
perturbation to the energy k · XΠk/2 [1].

1.3. Power orthogonality

In order to arrive at the diagonalized telegrapher Eq. (17), we made use of the fact that the mode
profiles k8 are power- and energy-orthogonal. Solutions to Eq. (7) simultaneously diagonalize
the operators Î × 8fH and Π. Here we show how these orthogonality relations are derived.
Similar derivations can be found for optical waveguides in Snyder and Love [6] and piezoelectic
waveguides in Auld [7].

The power- and energy-orthogonality relations are closely related to local conservation of
energy. First we derive local conservation of energy from Eq. (3) before deriving from it the
orthogonality relations. The operators in Eq. (3) are symmetric under exchange. For any unit
vector n̂ = (=̂, =̂)>, the product n̂ · Ψ8 × 8fHΨ 9 is invariant under 8 ↔ 9

n̂ · Ψ8 × 8fHΨ 9 = n̂ · Ψ 9 × 8fHΨ8 (28)
= =̂ · E8 ×H 9 + =̂ · E 9 ×H8 (29)

which is manifest when expressed in terms of the fields. Consequently, the divergence takes the
symmetric form

− ∇ ·
(
Ψ8 × 8fHΨ 9

)
= Ψ8 · ∇ × 8fHΨ 9 +Ψ 9 · ∇ × 8fHΨ8 . (30)

Substituting in Maxwell’s equations we find

− ∇ ·
(
Ψ8 × 8fHΨ 9

)
= mC

(
Ψ8ΠΨ 9

)
. (31)



so long as Π = Π> and mCΠ = 0. When 8 = 9 , this is the source-free form of local conservation of
energy (multiplied by 2). A similar result follows when Π = Π†,

− ∇ ·
(
Ψ∗8 × 8fHΨ 9

)
= mC

(
Ψ∗8ΠΨ 9

)
. (32)

Power-orthogonality follows from Eq. (32). Consider two modes Ψ8 and Ψ 9 of a waveguide
of the form in Eq. (6) with l8 = l 9 . In this case, the total time derivative in Eq. (32) vanishes
leaving

∇ ·
(
Ψ∗8 × 8fHΨ 9

)
= 0. (33)

Since the modes of the waveguide are confined such that k∗
8
× 8fHk 9 vanishes at the boundary of

the GH-plane, it follows that (
V 9 − V8

)
Î ·

∫
d�k∗8 × 8fHk 9 = 0. (34)

Non-degenerate modes V8 ≠ V 9 are power-orthogonal; in a flux-normalized basis, P8 9 = X8 9ℏl.
In a similar way we can show that when two modes have equal wavevectors V8 = V 9 ,(

l 9 − l8
) ∫

d�k∗8Πk 9 = 0. (35)

If V8 = V 9 and l8 ≠ l 9 , the modes are energy-orthogonal. But what we need to show is that the
modes are energy-orthogonal when l8 = l 9 and V8 ≠ V 9 . To do that we need another constraint
on the dynamics.

1.4. Energy orthogonality

We employ time-reversal symmetry to show that two modes, 8 and 9 , of the same frequency are
also energy-orthogonal ∫

d� k∗8Πk 9 = 0. (36)

Consider an electromagnetic field of the form

Ψ(C, G, H, I) =
∫

dlΨ̃(l, G, H, I)4−8lC . (37)

Under time-reversal T, each Fourier component of the field state vector becomes

TΨ̃ = fIΨ̃∗. (38)

It follows that T — specifically fI — flips the sign of the “power” operator (LHS of Eq. (3))

fI
(
∇ × 8fH

)
fI = −∇ × 8fH . (39)

In contrast, so long as [fI ,Π] = 0, the “energy” operator (RHS) does not change sign

fImCΠfI = mCΠ. (40)

This is what we intuitively expect: reversing time inverts the power without affecting the energy
density.

When deriving power-orthogonality, the time-dependence of Ψ∗1 and Ψ2 cancels such that the
total time derivative mC

(
Ψ∗1ΠΨ2

)
vanishes. We use the relative sign flip of the two operators

under T to preserve these energy terms.



If [Π, fI] = 0 and Π = Π∗, then the equations are symmetric under time-reversal. Every
harmonic solution Ψ (dropping the tildes) maps to a corresponding time-reversed solution
TΨ = fIΨ∗. It follows that

(TΨ2)∗ ·
(
∇ × 8fH + mCΠ

)
(TΨ1) = 0 (41)

and therefore
Ψ2 ·

(
−∇ × 8fH + mCΠ

)
Ψ∗1 = 0. (42)

Subtracting this from
Ψ∗1 ·

(
∇ × 8fH + mCΠ

)
Ψ2 = 0, (43)

we find
∇ ·

(
Ψ∗1 × 8fHΨ2

)
+Ψ∗1mCΠΨ2 −Ψ2mCΠΨ

∗
1 = 0 (44)

where instead of the total time derivative in Eq. (31), we have a difference. For waveguide modes,
solutions of the form k84

8V8 I−8l8 C , this becomes

8 (V2 − V1) Î ·
∫

d� k∗1 × 8fHk2 − 8 (l1 + l2)
∫

d� k∗1Πk2 = 0 (45)

after integrating over the cross-section. When l1 = l2 and V1 ≠ V2, the modes are power-
orthogonal and the first term vanishes, leaving us with the energy-orthogonality relation in
Eq. (36).

Thus at a fixed-frequency when Π = Π†, Π = Π∗, and [fI ,Π] = 0, the modes of a waveguide
simultaneously diagonalize the operators in Eq. (3) giving us the independent telegrapher Eqs. (17)
and, ultimately, the optomechanically coupled dynamics in Eq. (27).

2. Dynamics with loss and dephasing

The dynamics presented in the text (Eq. (1)) assume the mechanical amplitude 1 is constant along
the waveguide, and the scattering processes are perfectly phase-matched. Here we generalize the
model to include loss and dephasing.

2.1. Mechanical loss

If we include mechanical loss in our model, the mechanical amplitude 1 decays exponentially

1 (I) = 14−WI/2. (46)

In the presence of loss, the steady-state solutions become

a± (I) = a± (0) exp
[
±861

(
1 − 4−W1I/2

W/2

)]
. (47)

This yields the same solutions as before (Eq. (2)) except

I → 2
W

(
1 − 4−WI/2

)
. (48)

We use this to define the effective interaction length

!eff =
2
W

(
1 − 4−W!/2

)
(49)

which asymptotes to 2/W.



For the SH0 mode at 440 MHz we measure W = 11.7 dB/mm. With this W, !eff asymptotes to
742 `m. In the long-device limit, full conversion TE1↔TE0 requires

%c/2 =
c2

4C2b` 62!2
eff

(50)

=
36.5 `W
C2b`

(51)

which, given C2b` = −21.9 dB, is
%c/2 = 5.65 mW (52)

incident microwave power. This is roughly three orders of magnitude smaller than a bulk AOM
but is 10× larger than the efficiency reported by Hinkov et al. [8]. Improvements to 6, W, and Cb`
are needed to go beyond previous demonstrations. A 10 dB improvement to

��Cb` ��2 is suggested
by the -12 dB insertion loss of SH0 waveguide transducers at 2 GHz [9].

2.2. Dephasing and optical bandwidth

Above and in the text we consider phase-matched processes. If the AOM is driven at a different
frequency Ω such that

Δ ≡  + V1 (l) − V0 (l +Ω) (53)
= 0, (54)

the equations of motion become(
v−1mC + mI

)
a = 8614−WI/2fG4−8ΔIfIa. (55)

If Δ! � 1, the light scattered between modes by the mechanics will destructively interfere and
limit the total converted power.

We repeat the measurements and analysis presented in Fig. 4(c), varying the RF drive frequency
and the optical wavelength away from a phase-matched operating point. The results are plotted
in Fig. 1. While the RF bandwidth is dictated by the transducer response, the optical bandwidth
(Fig. 1(b)) is determined by phase-matching. We simulate a data set from Eq. (55) using the
measured values for 6Cb`!eff and an optical group index difference Δ=g = 0.175. Fits to the
simulated data are overlaid (red curve) on the measurements. The best-fit Δ=g is close to the
FEM numerical value of 0.125.

3. Characterizing the AO Multiplexer

The performance of the multiplexers are summarized in the manuscript. Here we provide details
on their characterization.

3.1. Transmission spectra of the optical couplers

The optical couplers are designed to adiabatically transfer the mode of the coupling waveguide
into the AO waveguide. Widths of the two waveguides are chosen by solving for the modes of
the adjacent waveguides as discussed in Section 3 of the manuscript. The tapered couplers are
simulated by FDTD in Lumerical [10] and their insertion loss plotted in Fig. 2(a).

Wemeasure the optical transmission through the device for the four optical paths TE0/1 →TE0/1,
plotted in Fig. 2(b). Transmission through the TE0 and TE1 paths is similar. The peak efficiency
of the grating couplers are independently measured to be -10 dB. The insertion loss of the device
excluding the grating couplers is approximately -5 dB. The device exhibits −10 dB crosstalk into
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Fig. 1. Optical and RF bandwidth of the AOM. The measurements and regression
presented in Fig. 4 are repeated over a range of wavelengths and RF frequencies to
determine the bandwidth of the AOM. a. The RF response is largely determined by
how the transucer, specifically Cb` , varies with Ω and so takes a shape similar to the
transducer’s conductance. b. Dispersion in the waveguide limits the optical bandwidth
via the phase-matching condition. Measurements are in black. A dataset is simulated
with the measured values for 6, Cb` , and W, and Δ=g = 0.175. It is fit to produce the red
curve.

the unintended optical port. This crosstalk causes the optical pump to leak through into the signal
channel. For example, if light is injected into the TE1 port (bottom-left in Fig. 3), in a perfect
device with no crosstalk only photons which absorb a phonon and scatter into the TE0 mode
leave from the bottom-right. With −10 dB crosstalk, 10% of the pump remaining at the end of
the waveguide is sent into the bottom-right port. How the crosstalk is related to the scattering
matrix of the optical couplers is explored in the next section.
The insertion losses for the different paths through the device are unequal which can arise

from, e.g., different efficiencies of the TE0 and TE1 optical couplers or variability in the fab. For
example, TE1→TE1 can have a higher insertion loss than TE1→TE0. As a result, if light is fully
converted from TE1 to TE0 by the mechanics, more light can leave the device with the drive on
than with the drive off. The modulation efficiency as defined in Fig. 4(d) and Fig. 5(b) can exceed
or not reach 0 dB at the full conversion drive power %c/2.

3.2. Acousto-optic measurements of the optical couplers

The transmission spectra discussed in the previous section capture the total optical behavior
of the device, but are insufficient to independently determine the crosstalk of the TE0 and TE1
couplers. We can use the acousto-optic signals to provide us with additional information. We
ultimately find that the crosstalk of the TE1 coupler dominates the crosstalk in Fig. 2.
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Fig. 2. Optical transmission spectra of the modulator. a. FDTD simulations of the
insertion loss of both couplers. b. The transmission is measured aligning the fibers
to each pair of optical ports. We observe -10 dB crosstalk. The center of the grating
response is near 1500 nm. c. Photograph of a fiber coupled to the device.

Consider how light is transmitted through the device from left-to-right when the left transducer
is driven. We construct a simple model for the optical transmission

0 (out) = )>
©«

cos Z −8 sin Z4−8ΩC

−8 sin Z48ΩC cos Z
ª®¬)0 (in) (56)

where

) =
©«
C00 C01

C10 C11

ª®¬ (57)

describes optical transmission through the multiplexer and 0 (in)
8

is the complex amplitude of
the light into port 8 where 8 = 0 for TE0 and 1 for TE1. ) includes the efficiency of the grating
couplers. The off-diagonal components C10 and C01 are the amplitude transmission coefficients
for the crosstalk of the TE0 and TE1 couplers, respectively. Unlike in the manuscript where the
modes considered are at different frequencies, here we have explicit factors of exp (±8ΩC) to keep
track of emission/absorption of a phonon. For simplicity, we assume the two multiplexers are
equivalent such that the one on the right is described by )>.

If light is incident on the TE0 port, 0> = (1, 0), then

0 (out) =


(
C200 + C

2
10

)
cos Z −8C00C104

−8ΩC sin Z −8C10C004
8ΩC sin Z

(C01C00 + C11C10) cos Z −8C01C104
−8ΩC sin Z −8C11C004

8ΩC sin Z

 . (58)



If light is incident on the TE1 port, 0> = (0, 1), then

0 (out) =


(C10C11 + C00C01) cos Z −8C00C114

−8ΩC sin Z −8C10C014
8ΩC sin Z(

C211 + C
2
01

)
cos Z −8C01C114

−8ΩC sin Z −8C11C014
8ΩC sin Z

 . (59)

In each component, the first term proportional to cos Z describes the linear optics. The second is
the upper sideband and the third is the lower sideband.
There are a couple things worth noting about these expressions. First, the crosstalk in the

optical spectra in Fig. 2(a) is proportional to the crosstalk of the couplers. It is large if just
one of the couplers has large crosstalk, i.e., either C01 or C10 is large. In contrast, the sideband
suppression is proportional to the product of the crosstalk of the couplers, C01C10. If just one of
the couplers has low crosstalk, the spurious sideband will be suppressed. With regard to the
optical couplers, low linear optical crosstalk is more demanding than sideband suppression.

We can measure each tone independently by heterodyne with the signal chain diagrammed in
Fig. 4(a). The square of the above expressions for the transmitted amplitude is proportional to
the power of the corresponding heterodyne signal. The following measurements were taken at
Ω = 2c × 441 MHz and 1570 nm. Given our measurements of 6, we remove the factors of cos Z
and sin Z from Eqs. (58) and (59), leaving only the inferred optical insertion loss. The signals are
renormalized by setting %00 (0) to the measured optical insertion loss for the TE0→TE0 path.
These values along with the scattering amplitudes are presented in Table 1.

Path l l +Ω l −Ω

TE0→TE0 C200 + C
2
10 C00C10 C10C00

-27.0 -46.6 -46.8

TE0→TE1 C01C00 + C11C01 C01C10 C11C00

-41.0 -47.1 -28.9

TE1→TE0 C10C11 + C00C01 C00C11 C10C01

-39.6 -24.8 -45.7

TE1→TE1 C211 + C
2
01 C01C11 C11C01

-26.3 -36.2 -38.2

Table 1. Optical insertion loss measured by heterodyne. We can use the heterodyne
measurements to backout the scattering parameters of the optical multiplexers. Entries
in the table are the amplitude transmission coefficient and the inferred optical insertion
loss for the associated path in dB, both described in the text. From the table we can
see that the left and right multiplexer have similar performance, and that the crosstalk
measured in Fig. 2 is dominated by the crosstalk of the TE1 coupler, C01.

From the first and last rows in Table 1 we can see that the crosstalk of the TE1 port, |C01 |2/|C11 |2 =
−10.9 dB, is an order of magnitude worse than that of the TE0 port, |C10 |2/|C00 |2 = −19.7 dB.
From this model, we expect the sideband suppression to be −30.6 dB. Instead we observe
−19.6 dB in the table but over −50 dB in Fig. 4(b) and roughly −40 dB in Fig. 5 of the main text.

In addition to optical crosstalk, mechanical reflections reduce the sideband suppression. If we
sweep Ω as shown in Fig. 3, we find that the suppressed sideband exhibits high contrast fringes
with a period on the order of a few MHz. This small period corresponds to mechanical delays



suggesting reflected phonons dominate over the optical crosstalk as a source of the spurious
sideband.
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Fig. 3. Fringes in the unmatched sideband with varying mechanical frequency
suggest that reflections of the mechanical wave play a leading role in determining the
sideband suppression. These reflections dominate over the contribution arising from
the AO multiplexer’s optical crosstalk. In this measurement, light is incident on the
TE1 port on the left and leaves the TE0 port on the right. The left transducer is driven.

3.3. Piezoelectric transducer efficiency and mechanical propagation loss

The design of the transducer and methods for characterizing its efficiency and the mechanical
propagation loss are described in detail in Refs. [9, 11]. The S-matrix of the device in Fig. 3 is
measured on a calibrated probe station. From the reflection measurements (88 where 8 = 1 for the
left transducer and 8 = 2 for the right, we see that the response of the transducer is repeatable.
The reflections (Fig. 4(a)) reach -2 dB for the SH0 response corresponding to a -4.3 dB loss from
impedance mismatch between the 50 Ω transmission line and transducer.

The single-port response is not enough to determine the transducer’s efficiency. There are other
loss mechanisms in addition to impedance mismatch which reduce the transducer’s efficiency.
Of the power emitted into the waveguide, nearly all of it is in the SH0 mode but, as discussed
in detail in Ref. [9], resonances in the transducer lead to large material damping losses. In
order to determine the transmission coefficient Cb` from microwaves in the line to phonons in
the waveguide, we need to measure the two-port response (21 and filter out contributions from
triple-transit, etc. [11]. In Fig. 4(c), we plot the raw (21 as well as the single-transit response
filtered in the time-domain. This filtered signal is equal to C2b`4

−W!/2, assuming symmetric
coefficients for the two transducers. The mechanical losses are independently determined by
measuring how the transmission varies with the length of the waveguide !. These devices
comprise a transducer-waveguide-transducer two-port network without the AO multiplexers. The
impulse response ℎ21, i.e. the Fourier transform of (21, is plotted in Fig. 5 where the peaks are fit
(inset) for the propagation loss W.

4. RF power-handling

The maximum conversion efficiency observed [max = 18% is limited by the microwave power-
handling of the transducer and the AO multiplexer. In Fig. 6, we plot reflections from the
transducer (11 measured on a vector network analyzer as the power is increased to 10 dBm at
which [max was observed. As the power is increased, the center frequency of the IDT decreases
and, for fixed-frequency drives, can cause drops above 1 dB. After removing the 1.2 dB round-trip
loss in the cable, this change in (11 amounts to a −3 dB decrease in the power delivered to the
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Fig. 4. Transducer response and mechanical transmission. The left and right
transducer in Fig. 3 are ports 1 and 2, respectively. a. The dip in the reflections near
440 MHz corresponds to the SH0 mode plotted in the bands in Fig. 1 of the manuscript.
b. The conductance reaches 2 mS.c. We overlay the transmission (21 filtering out
microwave crosstalk and higher-order transits in the device onto the raw data. The
filtered response removes ripples from the higher-order transits and is used to extract
C2b`4
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device. This power-dependent frequency shift causes the curves in Fig. 4(c) to deviate from a
sinusoid, and so we restrict our fits for 6Cb` to the low-power portion of the dataset. Not only
do we see frequency shifts, at 10 dBm discontinuities appear in (11 (Ω), evidence of bi-stability
arising from, e.g., Duffing nonlinearities.

At 13 dBm drive power, the tethers in the multiplexer broke. The AO and coupling waveguides
separated from one another, destroying the optical couplers.

430 445440435
Ω/2π (MHz)

|S
11

| (
dB

)

PRF (dBm)

Fig. 6. Power-handling of the transducer. Microwave reflections (11 from the
transducer show a center frequency shift and bi-stabilities as the drive power %RF is
increased to 10 dBm.

5. Inferring 6

In our heterodyne measurements described in Section 5 of the manuscript, both the pump
depletion and converted signal powers are measured, and both can be used to infer 6. In the
low-power limit, the pump depletion provides a better measure of the %c/2. Given a pump with
initial amplitude 00, the flux in the pump varies up to O

(
V5) as

|00 |2 cos2 (
6Cb`V!

)
≈ |00 |2

(
1 −

��6Cb`V!��2 + 1
3

��6Cb`V!��4) . (60)

while the signal power varies as

|00 |2 sin2 (
6Cb`V!

)
≈ |00 |2

(��6Cb`V!��2 + 1
3

��6Cb`V!��4) . (61)

Two terms in the series are needed to fit 6
��Cb` �� ! without independently measuring |00 |2. This

is satisfied for the pump to second-order in V but to fourth order for the signal, making pump
depletion a more sensitive measure of the efficiency in the low-power limit.

The drives used for the dataset in Fig. 4 were high enough for independent regressions on the
pump and converted signal to give comparable values for %c/2.
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