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Abstract: This document provides supplementary information to “Spectrally-resolved 
wedged reversal shearing interferometer.” This document explains the generalized phase-
shifting interferometry (GPSI) that is required for the phase retrieval of the spectrally-
resolved WRSI shearing interferograms. Then the full derivation for the wavefront extraction 
of the spectrally-resolved WRSI shearing interferograms is provided. 
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1. Generalized PSI 

The spectrally-resolved WRSI interferogram as a function of the mirror position can be 
written as 

( , , , ) ( , , )[1 cos(2 )] m mI x x y I x y xν ν πν= +  . (S1) 

The intensity that is measured at the detector is 

0 0

( , , ) ( , , , ) ( , , )[1 cos( 2 )]m m mI x x y I x x y d I x y x dν ν ν πν ν
∞ ∞

= = +   . 
(S2) 

This is just a Fourier cosine transform. The inverse gives us the desired spectrally-resolved 
WRSI interferogram  
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(S3) 

For a certain frequency ν  of the WRSI shearing interferograms, the k different phase 
shifts can be represented as 

0( , , ) ( , , ){1 ( , , ) cos[ ( , , ) ]}k WRSI kI x y I x y x y x yν ν α ν φ ν ψ= + +  . (S4) 

For a fixed point on the measurement plane, we rewrite the intensity as 
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For a total of N phase-shifts, the least square (figure of merit) is 
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where  is the measured intensity. To find the coefficients , ,  and minimize criterion 
, we write in matric form 
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and 
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Solving for the coefficients, we obtain  

1−=a A b . 
(S11) 

The phase is then 1 2

1

tanWRSI

a

a
φ −  

= −  
 

. 

Repeat this calculation for all ( , ) and we get ( , )WRSI x yφ . 

2. Phase-shifts selection for Generalized PSI 

For phase shifting interferometry for a single wavelength, it is very simple to select the phase 
shifts. Most of the time multiple steps of equal phase-shifts are used. As minimal of 3 phase-
shifts are needed because there are 3 unknowns in the two-beam interference equation. This 
selection works very well for single wavelength because the phase calculation can be made 
very simple, such as the 4-bin phase-shifting.  

However, this is not the case for a spectrally-resolved phase shifting interferometry. When 
the phase-shift is induced by adjusting an arm length in an interferometer, the phase-shift 
induced scales inversely with the wavelength. This can cause repeats of phase-shifts modulo 2  for shorter wavelengths. For example, The 0, /2, , 3 /2 (fourth roots of unity) 4-bin 
phase-shifting for the wavelength of 800nm would have two pairs of identical phase-shifts (0, 

, 0, ) for the wavelength of 400nm (second harmonic), which is detrimental and fails to 
provide enough information to extract the phase. The four phase shifts of 0, /2, , 3 /2 for 



the wavelength of 800nm starts to have identical phase shifts for wavelengths less than 600 
nm. Because the bandwidth of our simulated pulses does not include 600 nm, we choose the 
phase shift of 0, /2, , 3 /2 for the central wavelength 800 nm. If the bandwidth is large 
with certain wavelengths having repeated phase shifts, the phase shifts must be re-selected.  

3. Wavefront extraction of spectrally-resolved WRSI shearing interferograms. 

After the phase retrieval, it’s important to extract the wavefront. This can be done by 
manipulating the phase. Recalls that the phase of the WRSI at a certain natural frequency ω 
with the shearing direction of  is 

0 1( , ; ) 2 ( , )x ox ex
ox

W W
x y s c c y s s W x y

x x
φ ∂ ∂= + + − +

∂ ∂
. 

(S12) 

where  is the shearing amount in the +  direction, the subscript ox denotes odd order of x 
and ex denotes even order of x. The first two terms are due to the geometry of the setup where 
one of the entrance faces of the beam splitter cube (BSC) has a y-wedge angle. By measuring 
the phase of an interferogram with = 0, we will obtain 

0 1( , ; 0) 2 ( , )x
oxx y s c c y W x yφ = = + + . (S13) 

By Eq. (S13) and the property of odd function ( ( )0,  0oxW y = ), we can solve for the 

odd component of the wavefront. The solution is 
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Now we isolate the derivative of the wavefront by subtracting Eq. (S12) by (S13): 
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Numerically integrating the above equation and dividing by  yields 
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The even component of the wavefront can be computed by subtracting Eq. (S14) by Eq. 
(S16): 
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The total wavefront is  

( ) ( ) ( ) ( ),   ,   ,   ox exW x y W x y W x y f y= + + . . (S18) 

where ( ) ( ) ( )  0, 0,  oy eyf y W y W y= + . These wavefront components can be calculated 

using the interferogram with the shearing direction of  following the same derivation above. 
Their expressions are  
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and 
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where  is the shearing amount in the  direction and should be equal to . Adding up all of 
the odd and even components in Eq. (14, 17, 19, 20) will give us the total wavefront by Eq. 
(18). However, because the interferograms of our WRSI only consists of half of the beam, we 
only obtain the total wavefront in the first quadrant. To obtain the wavefront in all four 
quadrants, we utilize the property of odd and even function to get 

( , ) ( , ) ( , ) (0, ) (0, )ox ex oy eyW x y W x y W x y W y W y± = ± + + + , (S21) 

and 

( , ) ( , ) ( , ) (0, ) (0, )ox ex oy eyW x y W x y W x y W y W y± − = ± + − + . (S22) 

where > 0 and > 0. As a summary, the wavefront in the four quadrants are extracted 
using the four phase distributions ( , ; 0), ( , ; ), ( , ; 0),x x y

xx y s x y s s x y sφ φ φ= = =  and 

( , ; )y
yx y s sφ = . The phase retrieval and wavefront extraction are done using our Matlab 

code that is available upon request. The Matlab code for phase unwrapping is taken from Ref. 
42 and 43. 
 
4. Data acquisition and post-processing time 

To extract all electric field ( , , )E x y ω  information, a total of 9 autocorrelation 

measurements are required. In our experiment, each scan consists of 1500 frames at 30 frames 
per second as shown in Visualization 7. Therefore, the data acquisition time, which is 
proportional to the coherence length of the pulse, is about 450 seconds. To increase the data 
acquisition speed, we can increase the 23.5 nm step size of the scan (47 nm optical path 
difference) up to the Nyquist limit of about 180 nm step size and reduce the total number of 
frames as many are beyond the coherence length. The post-processing time is comparable 
excluding the step of converting the 3-dimensional result of ( , , )E x y ω  to a 4-dimensional 

representation of ( , , , )E x y z t . Note that ( , , )E x y ω  already contain the full information 

of the pulse. 

5. Other input polarization states 

The technique described can also be applied to arbitrary input polarization states. This can be 
achieved by measuring the amplitude and phase of the electric field for the horizontal and 

vertical polarization state individually ( ( , , ), ( , , ), ( , , )H V HE x y E x y x yω ω φ ω , and 

( , , )V x yφ ω ), along with an additional retardance measurement at a single wavelength (
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