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Here, we suppose that there are two single mode squeezed states with the same squeezing 
factors r, which can be expressed as 

    †

1 1 1cosh sinhS a r a r= −  (S1) 

    †

2 2 2cosh sinhS a r a r= −  (S2) 

where 1a  and  2a  are the annihilation operators of the two squeezed states. The two 
squeezed states are coupled on a 50:50 beam splitter with the relative phase of π/2. The output 
beams are entangled, which can be expressed as 

           † †

1 1 2 1 1 2 2
2 2

( ) ( cosh sinh cosh sinh )
2 2

E S iS a r a r ia r ia r= + = − + −  (S3) 

       † †

2 1 2 1 1 2 2
2 2

( ) ( cosh sinh cosh sinh )
2 2

E S iS a r a r ia r ia r= − = − − +  (S4) 

    
The squeezing factor r is measured under different OPO1 pump factors (ratio of the pump 

power to the threshold power). The threshold power of the OPO1 is about 163 mW, while the 
OPO2 has a threshold power of 193 mW. The dependence of the squeezing factor r on the 
pump factor is no obvious difference with that of the OPO1, which is omitted. Ideally, the 
squeezing factor of the generated entanglement state has the same value as the squeezing 
factor of the originally squeezed states. The squeezing factor of the entanglement state 
reaches the maximum value at the threshold power of 80%. The maximum squeezing degree 
is measured to be 13.8 dB below the shot noise limit, close to the record of 15 dB [4]. Here, in 
order to reduce the influence of anticorrelation noise on the fidelity, both two OPOs operate at 
the threshold power of 60%. Due to the additional propagation loss of the EPR beams, the 
ultimate squeezing factor of the entanglement state is less than that of the original squeezed 
state, corresponding to a maximum squeezing factor of 1.128. Thus, in the experiment, we 
can manipulate the squeezing factor from 0 to 1.128 by changing the pump power of the 
OPO. 

 
Fig. S2. Dependence of the squeezing factor on the pump factor (ratio of the pump power to 

the threshold power). The separated dot is the measured result in the experiment, the solid line 
is the fitted curve. 

Investigation of Continuous variable 1→2 quantum state distributor 
The schematic diagram of the continuous variable (CV) quantum state distributor is 

shown in Fig. S3. Similar to quantum teleportation operation [5], a CV EPR entanglement 
beam is employed to manipulate the distribution of the quantum state. The EPR beam is 
distributed to the Sender and Distributor to help the storage and reconstruction of the quantum 
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1

1 ˆˆ
11

c
disp in

Ra a E
RR

+= −
−−

 (S6) 

 
In order to optimize the gain of the classical channel, sinusoidal signals with the 

amplitude of 20 dB are imposed on the amplitude and phase modulators as the input state, 
respectively. The gain of the electronic signal is carefully calibrated by an adjustable 
attenuator, the calibration is completed when the observed signal of the transmitted quantum 
state at Victor’s station is 20 dB above the shot noise limit. 

After another beam splitter with the same reflectivity of R, the output states from two 
output parts of beam splitter are written by 

 
2 1 2

ˆ ˆˆ ( )i
out ina a R E E e θ+= − +  (S7) 

 
3 1 2

ˆ ˆˆ 1
1 1

i
out in

R Ra a E RE e
R R

θ+= − + −
− −

 (S8) 

where θ is the relative phase between the displaced field and EPR2. They correspond to the 
output states for the two paths of the distributor, which will be sent to two different nodes. 

The fidelity is defined as  outin inF ψ ρ ψ≡  in which “in” and “out” denote the input and 

output state [7]. In the case of unity gain, the fidelity for Gaussian state can be simply given 
by 

 
 2 2

2

(1 )(1 )out out

F
X Yδ δ

=
+ +

 (S9) 

where  2

outXδ ,  2

outYδ  are the variances of the quadrature amplitude and phase components, 
respectively. 

In the case of R=1/2, only half the information of the unknown quantum state is 

destroyed. For the classical case of r=0, the fidelity of both  2outa  and  3outa  are 2/3, this 
scheme corresponds to the optimal fidelity for a 1→2 symmetric Gaussian cloning machine. 
Once the EPR entanglement is introduced, the two output states are expressed as 

 
2 1 2

ˆ ˆˆ( 1 / 2) 2( ) / 2i
out ina R a E E e θ+= = − +  (S10) 

 
3 1 2

ˆ ˆˆ( 1 / 2) 2( ) / 2i
out ina R a E E e θ+= = − −  (S11) 

when θ is set to be 0, the fidelity of output 2 is 2
2 2 / (2 )rF e−= +  which is larger than 2/3 

with any r>0, and output 3 is 2
3 2 / (2 )rF e= +  which is always smaller than 2/3. 

Here, we define a parameter 2 2 2 2( , ) cos sin
2 2

r rV r e eθ θθ −= +  in which r is the squeezing 

parameter, according to the annihilation operator of the output state, the fidelities of two 
output nodes can be written as [8]: 

 2

2

2 ( , )
F

V r θ
=

+
 (S12) 

 3

2

2 ( , )
F

V r θ π
=

+ +
 (S13) 



so that the fidelities of the states at node 2 and node 3 can be controlled by the squeezing 
factor r and the relative phase θ between the EPR2 and the displaced state in this case. 
Investigation of 1→M quantum state distributor 

The setup can be conveniently extended to 1→M optimal quantum state cloning by 
simply change R to (M-1)/M, together with (M-2) beam splitters [8]. Once R is changed to 
(M-1)/M, the two output states from the beam splitter BS2 are given by 

     †

2 12
1

( )out in
Ma a E E

M
−= − +  (S14) 

    †

1 23
1 1

1out in
Ma M a E E

MM
−= − − +  (S15) 

so the fidelity at node 2 is calculated to be 

 2
2

1
1

1 r
F M e

M
−

= −+
 (S16) 

A beam splitter with the reflectivity of (M-2)/(M-1) is used to split the state into two parts, the 
output states of this beam splitter are written as 

     †

1 23' 1
1 1 2

( 1) 1( 1)
out in

M Ma a E E V
M M MM M

− −= − + −
− −−

 (S17) 

     †

1 24 1
( 1)( 2) 2 1

2
( 1) 1

out in
M M Ma M a E E V

M M M M
− − −= − − + +

− −
 (S18) 

in which 1V  is introduced by the other side of the beam splitter. The fidelity at node 3 can be 

calculated by the expression of the  3'outa , is given by 

 3
2 2

2
2 1 ( 2)( 2) 1

2
1 2 ( 1) 2 1

r r
F M M M Me e

M M M M
−

= − − −+ + +
− − −

 (S19) 

All the other quantum states from node 4 till node M+1 have the same fidelity as the 
quantum state at node 3 for 1→M optical quantum cloning. 
Fidelity of multistep quantum state distributor 

In the case of 1→2 quantum state distributor with R=1/2, the distributed states at two 
output nodes have the fidelity covering from 0.17 to 0.95 in virtue of the controllable 
distribution process. The operation scheme of the controllable quantum state distributor is 
easily scalable to 2k channels by a cascaded k-level distributing operation in a straightforward 
manner, as is shown in Fig. S4. Here, the high fidelity is essential to build cascade state 
distributing operations. As the distributing level is increased, the fidelity of the distributed 
state decreases. No matter how many levels distributing operations one tries to finish, the 
optimal fidelity of the distributed state at the last level should be more than the classical limit 
2/3 that is the threshold of the quantum distributor. We define a maximum parameter n to 
signify how many times distributing operations are expected to be achieved sequentially. n is 

defined to satisfy 
2

2 1

3 1 / 2rne−=
+

. Therefore, n can be expressed as [9] 

 exp

2
exp

1

2 2
t

r
t

F
n

e F−= =
−

 (S20) 
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Fig. S6. Information processed through the transmitted channel. (a) The red curve represents the information 

processed through the semi-quantum channel as a function of the entangled degree in our protocol; the blue curve 
shows the information processed through the quantum channel in the protocol with only linear optics in which the 
fidelities at the receivers’ nodes are the same as the fidelities in the protocol using EPR states with different 
entangled degree. (b) The information processed through the semi-quantum channel as a function of the entangled 
degree under different number M of receivers’ nodes. 

The displaced state expressed by Eq. (S6) is transmitted to the Distributor through semi-
quantum channel, the information processed through this channel can be expressed by [11] 

 2

1
log (1 )

2
I γ= +  (S21) 

in which γ  is the signal-to-noise ratio calculated from the variances of signal and noise. 

For a given  ina , the displaced state is only determined by R and 1E , so I could be determined 

by R and 1E  too. With the increase of entangled degree, I gets lower and lower, the 
information processed through the semi-quantum channel as a function of the entangled 
degree is shown in Fig. S6(a). In our experimental realization for 1→2 quantum state 
distribution, the maximum fidelity of 0.95 is achieved, corresponding to I1=0.250. When the 
same fidelity is obtained with only line optics, I2=1.271, it is about 5.1 times than I1. The 
information of the transported quantum state is submerged into the thermal noise of the EPR 
entanglement is the main reason that I1 becomes such low. For point-to-multipoint quantum 
state distribution, the information of the quantum state in the semi-quantum channel gets 
lower and lower with the increase of the receivers’ nodes, shown in Fig. S6(b). Additionally, 
owing to high entangled degree, one could obtain little information of the quantum state from 
the semi-quantum channel with the help of EPR entanglement. 
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