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Section 1. Bayesian optimization algorithm for acquiring the best set 

of parameters 
For designing an optical metasurface, it is necessary to obtain the relationship 

between optical response and geometrical parameters of nanostructure in 
micro-nanometer scale. Calculation amount for conventional grid search method is 
exponentially increase for structure/model characterized with multi-parameters. 
Bayesian optimization is a convenient and economical way for this calculation. 

Fig. S1 shows the schematic diagram of Bayesian optimization in our calculation. A 
number of points was chosen as initial points in random in the full parameter 
hyperspace (each parameter is a dimension and often need to be limited with 
boundaries and normalized) and sent to FDTD for calculation. The calculation process 
in FDTD was considered as a black box function (objective function) which inputs a 
set of parameters and outputs optical responses. In this work, some parameters were 
associated with each other to reduce the amount of calculation (period P = 2×outer 
radius R2, outer radius R2 = 2×inner radius R1, outer height H2 = inner height H1), and 
cross-polarization transmittivity (TLR) was chosen as target function for optimization, 
in which a prior function of Gaussian process is used to establish a regression model 
from separate points. Subsequent group of parameters was selected by acquisition 
function (in this work, acquisition function is upper confidence bound, UCB), from 
which the calculation result was used to amend the original regression model if the 
requirement of optimization is not satisfied. From the Bayesian optimization, a set of 
optimized group of parameters can be obtained.  
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Figure S1. Flow chart of Bayesian optimization in calculation. 
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Section 3. Electric fields at different heights in the NDHS structure 

with different twist angles 

Figure S3 shows the electric fields at different heights in the NDHS structure with 
different twist angles of Ψ=0°(1st row), 75°(2nd row) and 140°(3rd row), respectively, 
in the case of LCP incidence on a left-handed surface. It is seen that strong field 
enhancement occurs between IHS and OHS in the case of optimized Ψ=75°[in the 
band of (60°, 100°)], in which strong interference field remains in the gap between 
IHS and OHS at four different heights (Z = 0.25, 0.5, 0.75 and 1 μm) while no 
interaction between IHS and OTS can be observed in other twist angles, such as 0° 
and 140°, which is consistent with that observed in Fig. 3. 

 

 
Fig. S3. Electric fields at different heights in NDHS structure with different twist 
angles in the case of LCP incidence on a left-handed surface. 

 
  



Section 4. Enhancement of cross polarization conversion in the case 

of RCP incidence on left-handed NDHS surface 

The interaction between IHS and OHS in the case of RCP incidence on 

left-handed NDHS surface can be written based on the theory in main text with minor 

changes:  

1 2

3 4

( 2 )
RL 1RL 2RL

( 2 )
RR 3RR 4RR

E +

E +

i i
i i

i i
i i

t E e t E e

t E e t E e

Φ Φ − Ψ

Φ Φ − Ψ

∝

∝
       (S1) 

Where ERL and ERR are the LCP (i.e., cross-polarized) and RCP (i.e., co-polarized) 
components in the transmitted electric field with a RCP incidence. t1RL, t2RL and t3RR, 
t4RR are the transmission coefficient of cross-polarization and co-polarization 
transmission component of the IHS and OHS, respectively. Φ1, Φ2 and Φ3, Φ4 are the 
corresponding phase shifts of the cross-polarization and co-polarization component. 
Ψ is the twist angle between the IHS and OHS. Similarly, To maximize the 
cross-polarization component, the condition of constructive interference between IHS 
and OHS must be satisfied, i.e.,  

1 2 2 2nψ πΦ − Φ + =          (S2) 

Therefore, Ψ is around  60° when n=0, which is consistent with line 1 in Fig. 3(d), 
and Ψ is around 120° when n=1, which is consistent with line 2 in Fig. 3(d). 
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Section 7. Details about lock-in imaging technique 
Because of intense background infrared radiation in the infrared wavelength 

range of interests, lock-in technique was utilized to extract effective signal from the 
environment noise. Input signal (Si) and reference signal (Sr) with same frequency fin 
are 

in

in

sin(2 )+ ( )

sin(2 )
i i i i

r r r

S A f t n t

S B f t

π ϕ
π ϕ

= +
= +

       (S3) 

where Ai and Br are amplitude of the input signal and the reference signal, respectively. 
ni(t) represents the invalid signal, including noise signal and nonperiodic signal. 

Input signal and reference signal were multiplied together and integrated over 
time for a period T 

0 0

1
( ) ( ) ( )

T

i rS t S t S t dt
T

=         (S4) 

It's easy to show the results of time integral for noise and nonperiodic part are zero. 
Thus, only the signal with frequency fin can be measured so that the noise eliminating 
is achieved. 

In our experiment, a set of time sequentially sampled images (1000 photos) with 
an acquisition frequency of 100 Hz are taken by thermal imaging camera. These 

images were tailored to square array (512×512 pixels) for reducing the amount of 

calculation. Each pixel in these photos is an independent channel (total 512×512 

channels) and undergoes in parallel phase lock-in processing (based on Eq. S4) using 
Matlab (Matlab, Mathworks). The results of intensity S0 of valid signal in each pixel 

are recombined into a full image (512×512 pixels), i.e., images after lock-in process. 


