Supplemental Document

Optics EXPRESS

Small and large scale plasmonically enhanced luminescent solar concentrator for photovoltaic applications: modelling, optimisation and sensitivity analysis: supplement

MEHRAN RAFIEE,^{1,*} ^(D) SUBHASH CHANDRA,¹ HIND AHMED,¹ KEITH BARNHAM,² AND SARAH J. MCCORMACK¹

¹Deparment of Civil, Structural and Environmental Engineering, Trinity College Dublin, Dublin, Ireland ²Faculty of Natural Sciences, Department of Physics, Imperial College London, London SW7 2AZ, UK *rafieem@tcd.ie

This supplement published with The Optical Society on 30 April 2021 by The Authors under the terms of the Creative Commons Attribution 4.0 License in the format provided by the authors and unedited. Further distribution of this work must maintain attribution to the author(s) and the published article's title, journal citation, and DOI.

Supplement DOI: https://doi.org/10.6084/m9.figshare.14378990

Parent Article DOI: https://doi.org/10.1364/OE.418183

Small and Large Scale Plasmonically Enhanced Luminescent Solar Concentrator for Photovoltaic Applications: Modelling, Optimisation and Sensitivity Analysis: supplement1

Nomenclature		Unit
Dim	Dimension	
di	Distance (spacing between MNP and luminescent molecule)	m
e_p	Dipole moment	
Ε	Electric field intensity	V/m
E _i	Intensity of incident electric field	V/m
G_g	Geometric gain	
L	Length	m
N_{edg}	Number of photons reaching the edge of the pLSC	
N _{inc}	Number of photons incident on top of the pLSC	
$P_{T.abs}^L$	Total power absorbed by the luminescent material	W
$P^L_{abs}(\lambda)$	Power absorbed by the luminescent material in each wavelength	W
P _{atte}	Attenuation loss power	W
P _{cone}	Escape cone loss power	W
P _{direct}	Power reaching PV directly	W
$P_{emit}(\lambda)$	Power emitted by luminescent material in each wavelength	W
P _{T.emit}	Total power emitted by luminescent material	W

Table S1: The nomenclature used in the model

$P_{in}(\lambda)$	Flux (power) density of the incident light	W.m ⁻² .nm	
$P_{lost}(\lambda)$	Power lost due to loss mechanisms including the reabsorption, escape cone, attenuation and scattering losses	W	
$P_{out}(\lambda)$	Power reached to the PV cell	W	
$P_{reflect}(\lambda)$	Reflected power	W	
$P_{refract}(\lambda)$	Refracted power	W	
$P_{re-abs}(\lambda)$	Reabsorbing loss	W	
$P_{SPR}\left(\lambda ight)$	SPR power	W	
P _{scat}	Scattering loss	W	
P _{trans}	Transmitted power	W	
P _{trap}	Trapped power	W	
PR	Probability or weighted probability of an event		
PR^{L}_{abs}	Probability of absorbance by luminescent material		
PR_{abs}^{MNP}	Probability of absorbance by MNP		
PR _{atte}	Probability of attenuation		
PR _{emit}	Weighted probability from emission spectrum		
PR _{PDEF}	Probability of enhancement due to PDEF		
PR _{QF}	Probability of quenching		
PR _{QY}	Probability of emission (from QY)		
PR _r	Probability of reflection	Probability of reflection	
PR _{re-abs}	Probability of reabsorption	Probability of reabsorption	
PR _{scat}	Probability of scattering		
$PR_{T.abs}^{L}$	Luminescent material total absorbance probability		
W	Width	m	
Γ_{nr}	Non-radiative decay rate	s ⁻¹	
Γ_r	Radiative decay rate	s ⁻¹	
Γ_{rM}	Radiative decay rate due to the MNP presence	s ⁻¹	
η	Refraction index of the medium		
η_0	Efficiency of bare PV cell		

θ_c	Critical angle	Degree
$ heta_i$	Angle of incident direction	Degree
λ	Wavelength	m
$ au_0$	Lifetime	S
$\Psi(e_p, x_d, \lambda_{ex})$	Excitation rate	

Table S2: The acronym used in the model

Acronym	Detail
ABC	absorbing boundary condition
Ag NP	silver nano particles
Au NS	gold nano spheres
Au NS-c	doping concentration of Au NS
BIPV	building integrated photovoltaic
С	solar concentration ratio
ECE	energy conversion efficiency
FDTD	finite difference time domain
FFT	fast fourier transform
LSC	luminescent solar concentrator
MCRT	Monte Carlo ray tracing
MNP	metal nano particle
OCE	optical conversion efficiency
pLSC	plasmonically-enhanced luminescent solar concentrator
PBC	periodic boundary conditions
PCE	power conversion efficiency
PDEF	photon density enhancement factor

PML	perfectly matched layer
PV	photovoltaic
SPR	surface plasmon resonance
TIR	total internal reflection
QD	quantum dots
QD-c	doping concentration of QD
QY	quantum yield (emission efficiency of luminescent molecule)
QY _{total}	emission efficiency of the coupled MNP-luminescent molecule

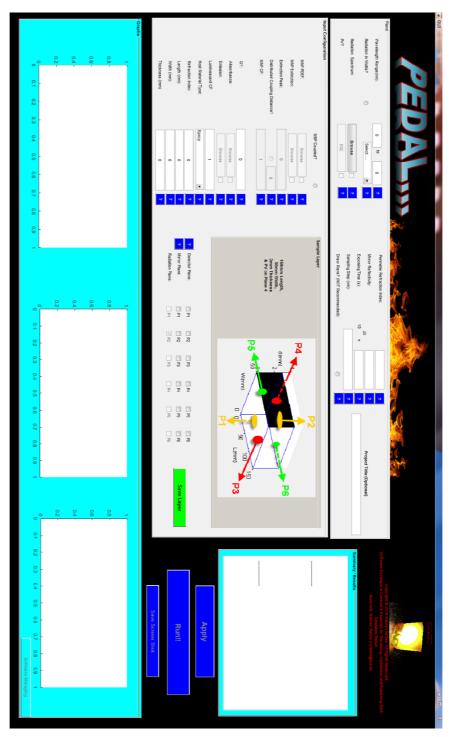


Fig. S1. Developed GUI for the 3D FDTD-MCRT model where the user is able to customize and simulate the pLSC of interest. Note: The GUI has been also designed for modelling other (single and multi-layer) luminescent solar devices including LSC as well as traditional and plasmonically enhanced luminescent down-shifting (LDS and pLDS) devices