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Spectral caustics of high-order
harmonics in one-dimensional
periodic crystals: supplementary
material
In Sec. 1, we present the derivation of the Hessian matrix of classical action. In Sec. 2, we make
a series of extensive calculations to investigate Fig. 2 in the main text, including the effects of
dephasing time, the variant of the transition dipole moment, and the pulse duration on the high
order harmonic spectrum.

1. DERIVATIONS OF THE HESSIAN MATRIX

The time-dependent schrödinger equation (TDSE) in length gauge is given by

i∂tψ(x, t) = [H0 − xF(t)]ψ(x, t), (S1)

where F(t) is the external field, H0 = p̂2/2 + V(x) is the field-free Hamiltonian and V(x)
is the periodic potential. The eigenvalue equation of the field-free Hamiltonian is given by
H0φn(k, x) = εn(k)φn(k, x), where εn(k) and φn(k, x) are the eigenenergy and the corresponding
Bloch state of crystal momentum k, respectively. Expanding the wavefunction ψ(x, t) as ψ(x, t) =
∑n
∫

BZ dk an(k, t)φn(k, x) and substituting it into Eq. (S1), we have the semiconductor Bolch
equations (SBEs) as

i∂tρnn′ (K, t) = −
(

εn(K + A(t))− εn′ (K + A(t)) + i
(1− δnn′ )

T2

)
ρnn′ (K, t)

+ F(t)∑
m
(dmn(K + A(t))ρmn′ (K, t)− dn′m(K + A(t))ρnm(K, t)), (S2)

where ρnn′ (K, t) = a∗n(K, t)an′ (K, t), dnn′ (k) = −i pnn′ (k)/ [εn(k)− εn′ (k)] is the transition dipole
moment, and pnn′ (k) = 〈φn(k)| p̂|φn′ (k)〉. T2 is introduced as the dephasing time. Here, we use
a transformation k = K + A(t) , where A(t) = −

∫ t
−∞ F(τ)dτ is the vector potential. Hence,

the interband current is Jer(t) = −
∫

BZ dK ∑n,n′ ;n 6=n′ ρnn′ (K, t)pnn′ (K + A(t)), and the intraband
current is Jra(t) = −

∫
BZ dK ∑n ρnn(K, t)pnn(K + A(t)).

With a transformation an(K, t) = bn(K, t) exp (−i
∫ t
−∞ εn(K + A(τ))dτ) [1], the two band SBEs

can be rewritten as

π̇(K, t) = −π(K, t)
T2

− iF(t)d(K + A(t))(nv − nc)e−iS(K,t),

ṅm(K, t) = ismF(t)d(K + A(t))π(K, t)eiS(K,t) + c.c, (S3)

where S(t) =
∫ t
−∞ εc(K + A(τ))− εv(K + A(τ))dτ and d(k) = −i pcv(k)/εg(k). nm(K + A(t)) =

|bm(K + A(t))|2 and π(K + A(t)) = b∗c (K + A(t))bv(K + A(t)) are the diagonal and off-diagonal
elements of the density matrix, respectively. sm = −1 and 1 for m =v (valence band), and
c(conduction band), respectively. Assuming nv − nc ≈ 1, the interband harmonics can be ex-
pressed as Jer(ω) =

∫
BZ dk

∫ ∞
−∞ dt

∫ t
−∞ dt′ g(k, t′, t)e−iS(k,t′ ,t)+iωt−(t−t′)/T2 + c.c., where S(k, t′, t) =∫ t

t′ εc(K + A(τ))− εv(K + A(τ))dτ. Similar to the treatment in the original recollision model[1],
we assume that g(k, t′, t) = ωd(k)d∗(k + A(τ)− A(t)) is a slowly varying term. Applying the
stationary phase method to the integration, we get the saddle point equations as

∂S
∂k

=
∫ t

t′

∂εg(κτ)

∂k
dτ = xc − xv = 0, (S4a)

∂S
∂t′

= −εg(κt′ ) = 0, (S4b)

∂S
∂t

= εg(k) + F(t)
∫ t

t′

∂εg(κτ)

∂k
dτ = ω, (S4c)



where κτ = k + A(τ)− A(t).
As a result, the determinant of the Hessian matrix S′′ can be expressed as

|S′′| =


∫ t

t′
∂2εg(κτ)

∂k2 dτ − ∂εg(κt′ )
∂k

∂εg(k)
∂k + F(t)

∫ t
t′

∂2εg(κτ)
∂k2 dτ

− ∂εg(κt′ )
∂k F(t′) ∂εg(κt′ )

∂k −F(t) ∂εg(κt′ )
∂k

∂εg(k)
∂k + F(t)

∫ t
t′

∂2εg(κτ)
∂k2 dτ −F(t) ∂εg(κt′ )

∂k F(t) ∂εg(k)
∂k + F2(t)

∫ t
t′

∂2εg(κτ)
∂k2 dτ



=


b −a(κt′ ) a(k) + F(t)b

−a(κt′ ) F(t′)a(κt′ ) −F(t)a(κt′ )

a(k) + F(t)b −F(t)a(κt′ ) F(t)a(k) + bF2(t)



=


b −a(κt′ ) a(k) + F(t)b

−a(κt′ ) F(t′)a(κt′ ) −F(t)a(κt′ )

a(k) 0 0


= a(k)a(κt′ )

[
a(κt′ )F(t)− (a(k) + bF(t))F(t′)

]
, (S5)

where a(κτ) =
∂εg(κτ)

∂k ,and b =
∫ t

t′
∂2εg(κτ)

∂k2 dτ.
From Eq. (S4c), we can obtain

dω

dt′
= −a(κt′ )F(t) + [a(k) + bF(t)]

dk
dt′

+ [a(k) + bF(t)] F(t)
dt
dt′

. (S6)

Taking the derivative of Eq. (S4b) in the t′ direction, we can get

dk
dt′

= −F(t)
dt
dt′

+ F(t′). (S7)

According to Eq. (S6) and Eq. (S7),

dω

dt′
= [a(k) + bF(t)] F(t′)− a(κt′ )F(t), (S8)

so that the determinant of the Hessian matrix [see Eq. (S5)] reduces to∣∣S′′∣∣ = −a(k)a(κt′ )
dω

dt′
. (S9)

2. EXTENSIVE CALCULATIONS

This section makes a series of extensive calculations to investigate the HHG patterns in Fig. 2.
For better comparison, we plot Fig. 2 in the first column of Fig. S1. These results are obtained by
solving the time-dependent Schrödinger equation in the velocity gauge [VG-TDSE, Eq. (6) in the
main text] with a laser pulse duration of Tp = 11 T0, where T0 is an optical cycle.

Firstly, to study the difference between the velocity and length gauges, we also solve the length
gauge two-band semiconductor Bolch equations (LG-SBEs, Eq. (S2)). The band structure and
the transition dipole moment are extracted from the one-dimensional model used in the main
text. Different dephasing time T2 are applied here, i.e., T2 = ∞ (the second column of Fig. S1),
T2 = T0 (the third column), and T2 = T0/2 (the fourth column), respectively. Comparing the
HHG spectra for the velocity (the first column) and length (the second column) gauges, the
primary pattern of the HHG remains the same in different gauges, while some minor differences
may be ascribed to the neglect of the higher bands in the case of the length gauge. The second,
third, and fourth columns show that the branch from the bottom left to the top right of the caustic
pattern becomes weaker with the decrease of T2. This branch corresponds to the coalescence of
two long trajectories. In contrast, the caustic structures generating by the coalescence of the two
short trajectories remain sharp.

Second, we investigate the variant of the interband transition dipole moment. In the simulation
of the fifth column, we by-hand set interband transition dipole moment d(k) constantly equals
d(0). We find that the structure and position of the major enhancement we focus on in this work
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Fig. S1. Normalized HHG spectra as a function of the phase delay ϕ for R ≈ 0.29 [(a)-(f), the
first row], R ≈ 0.49 [(g)-(l), the second row] and R ≈ 0.93 [(m)-(r), the third row], respectively.
[(a),(g),(m), the first column] Reproduction of Fig. 2 changing the alignment. HHG spectra
with dephasing time T2 = ∞ (the second column), T2 = T0 (the third column) and T2 = T0/2
(the fourth column) by solving the SBEs in the length gauge. [(e),(k),(q), the fifth column] The
same as (b), (h), (n) [the second column] except that d(k) is fixed at d(0). [(f),(l),(r), the sixth
column] Spectra by solving the TDSE in the velocity gauge [Eq. (6) in the main text] with laser
pulse duration of Tp = 5 T0. Black and white solid lines in the first and sixth columns are the
caustic lines predicted by semi-classical theory.

remain the same as the results in the second column, where the transition dipole moment d(k) is
extracted from the 1D model in the main text and has a pronounced maximum at k = 0.

We also notice that, in Fig. S1(a) [Fig. 2(a) in the main text] and Fig. S1(g) [Fig. 2(b) in the
main text], some secondary enhancements below the primary enhancement can be seen. In
the second and third columns, the secondary enhancement is weaker due to the dephasing
effect. More interestingly, in the fifth column, some secondary enhancements disappear when the
dipole moment is by-hand set to be a constant. It suggests the relation between the secondary
enhancement and the trajectories with non-zero electron-hole separation proposed recently [2–4].

Finally, we solve VG-TDSE with a shorter pulse duration, i.e., Tp = 5 T0, and plot the results in
the sixth column. Different from the discrete structures in the first column, the patterns here are
more continuous and easier to distinguish the caustic structures. Additionally, the structure and
the position of the secondary enhancement change with the laser pulse duration.

3



REFERENCES

1. Vampa, G. and McDonald, C. R. and Orlando, G. and Klug, D. D. and Corkum, P. B. and
Brabec, T., “Theoretical Analysis of High-Harmonic Generation in Solids,” Phys. Rev. Lett.
113,073901 (2014).

2. Osika, Edyta N. and Chacón, Alexis and Ortmann, Lisa and Suárez, Noslen and Pérez-
Hernández, Jose Antonio and Szafran, Bartłomiej and Ciappina, Marcelo F. and Sols, Fer-
nando and Landsman, Alexandra S. and Lewenstein, Maciej, “Wannier-Bloch Approach to
Localization in High-Harmonics Generation in Solids,” Phys. Rev. X 7,021017 (2017).

3. Yue, Lun and Gaarde, Mette B., “Imperfect Recollisions in High-Harmonic Generation in
Solids,” Phys. Rev. Lett. 124,153204 (2020).

4. Parks, A. M. and Ernotte, G. and Thorpe, A. and McDonald, C. R. and Corkum, P. B. and
Taucer, M. and Brabec, T., “Wannier quasi-classical approach to high harmonic generation in
semiconductors,” Optica 7,1764 (2020).

4


