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This document provides supplementary information to “A Two-step-training Deep Learning 
Framework for Computational Imaging without Physics Priors”. We provide more 
information including: the comparison between varying reconstruction approaches in the 
noise-free single-pixel imaging with the 4X compression-ratio Russian-Doll Hadamard 
patterns, the extra evidence that the fully-connected layer (FCL) is capable of learning the 
inverse model in the cases with varying compression ratios and noise levels, the image de-
autocorrelation with two-step-training deep learning (TST-DL) as a nonlinear model, the 
experimental single-pixel imaging results at the 256X compression ratio, the comparison 
between TST-DL and one-step-training deep learning (OST-DL) with an auxiliary loss 
function (Multi-outputs OST-DL), the performance of TST-DL with respect to the size of the 
training dataset, the computational complexity of the DL approaches and a list of 
abbreviations used in the main manuscript and supplementary material. 

1. Comparison of reconstruction approaches in single-pixel imaging with 
Russian-Doll Hadamard patterns 

The reconstructed images from multiple reconstruction approaches in the noise-free single-
pixel imaging with the 4X and 8X compression-ratio Russian-Doll (RD) Hadamard [1] 
patterns are shown in Fig. S1. The images from the two-step-training deep learning (TST-DL) 
are shown in the last column and compared with (1) reconstruction approaches with physics 
priors including the established non-deep-learning (non-DL), model-based optimization 
approaches (an iterative L2 norm minimization approach LSQR [2] and a two-step iterative 
shrinkage/thresholding (TwIST) algorithm [3]) and the physics-prior-based DL (PPB-DL) 
approach using the U-Net architecture [4]; (2) the other three DL frameworks without physics 
priors (a deep convolutional auto-encoder network (DCAN) [5], one-step-training DL (OST-
DL) and two-step DCAN). The intermediate results from the first-step training using the 
fully-connected layer (FCL) in TST-DL are also shown as FCL-DL. For DCAN and OST-
DL, both as one-step training approaches, the training runs 200 epochs. For PPB-DL, since 
the initial guess of the image is obtained because of the known forward model, the training 
runs 100 epochs for a fair comparison. For two-step DCAN and TST-DL, each training step 
runs for 100 epochs. 

For quantitative comparison, Fig. S1 (b) and (c) show the mean and the standard deviation 
(the error bar) of the RMSE and structural similarity index (SSIM) [6] through the 2,000 
testing images at 4X and 8X compression ratios from all the reconstruction approaches (For 
TwIST, 500 images in the testing dataset were reconstructed and used to calculate the 
averaged RMSE and SSIM instead of the full testing dataset in the interest of time). We can 



see that the results from DL approaches are comparable to those from the established model-
based optimization approaches (LSQR and TwIST). We also show the per-pixel accuracy 
from the error images where the difference between the ground-truth image and the 
corresponding reconstructed image is calculated. We can see in Fig. S1 that most of the errors 
come from the edges of the images. This is expected since high frequency information is 
often the most difficult to reconstruct in compressed sensing applications. Importantly, both 
LSQR and TwIST approaches require accurate knowledge of the forward model for image 
optimization. In addition, reconstruction from TwIST require thousands of iterations, which 
cannot achieve fast image reconstruction. Besides, we can see in Fig. S1 (b) and (c) that for 
most of the cases, the PPB-DL is the best. This makes sense since the initial guess of the input 
images in PPB-DL needs the physics priors of the model. It is reasonable that the 
reconstruction results will be better when the exact model (with no model mismatch) is 
incorporated in the framework. For TST-DL, even though the physics priors of the model are 
unknown, the results are almost equivalent to those from PPB-DL and outperform those from 
the one-step training approaches (DCAN, OST-DL) and two-step DCAN. The reason TST-
DL outperforms two-step DCAN is that deeper U-Net structure with the skip connections is 
better able to capture and preserve image features. Therefore, in noise-free single-pixel 
imaging with RD Hadamard patterns, TST-DL is better than the approaches (DCAN, OST-
DL and two-step DCAN) that do not incorporate the model and comparable to PPB-DL with 
the prior knowledge of the model. 
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Fig. S1. Reconstructed images of a swan in the testing dataset from LSQR, TwIST, PPB-DL, 
FCL-DL, DCAN, OST-DL, Two-step DCAN and TST-DL at 4X and 8X compression ratios, 
the ground-truth image of the swan and their corresponding error images. (a) The ground-truth 
image of a swan. (a1-a8) The reconstructed swan images from all the approaches respectively at 
the 4X compression ratio and their corresponding error images. (a9-a16) The reconstructed 



swan images from all the approaches respectively at the 8X compression ratio and their 
corresponding error images. (b) RMSE for the 8 listed reconstruction approaches in 4X and 8X 
compression ratios with RD Hadamard patterns. (c) SSIM for the 8 listed reconstruction 
approaches in 4X and 8X compression ratios with RD Hadamard patterns. The error bars 
represent the standard deviation of the RMSE or SSIM of the testing images with respect to the 
ground truth. 

2. The FCL’s capacity and robustness to learn the inverse model 

For additional evidence that the FCL indeed learns a robust estimate of the inverse of H (H is 
the known forward model matrix), we plot the matrix multiplication ·  ( is the 
learned inverse model matrix) and compare with the ·  (  is the inverse model 
matrix calculated from LSQR optimization of spatially varying impulse responses) in the 
simulated single-pixel imaging using 2X, 4X and 16X compression-ratio RD Hadamard 
patterns and with varying SNR levels (-5dB, 0dB, 10dB and the noise-free case) in the 
measurement data. In this case,  is equivalent to  because of the orthogonality of the 
RD Hadamard matrix. The results are shown in Fig. S2. The closer the result of ·  is to 
an identity matrix, the better the inverse model matrix is (for extra comparison, the result of ·  is a random matrix where  is a random matrix as shown in Fig. S2 (c), (j) and 
(q)). The results show that at the noise-free case, the learned patterns are comparable to those 
of the ones calculated from LSQR optimization. As the level of noise increases, the energy of ·  deviates a little farther from the diagonal. The results from the 0dB and -5dB cases 
are reasonable given the high level of added noise. Thus, the single FCL learns a robust 
estimate of the inverse model in single-pixel imaging. 
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Fig. S2. Evidence that the FCL learns the estimate of the inverse model matrix. (a) The result 
of ×  with the 2X compression-ratio RD Hadamard patterns. (b) Zoom-in result of (a) 



within the dotted square region in (a). (c) Zoom-in result of ×  (with the same zoom-in 
region) with the 2X compression-ratio RD Hadamard patterns. (d-g) The zoom-in results of 

×  (with the same zoom-in region) with 2X compression ratio in the varying SNR 
cases. (h) The result of ×  with the 4X compression-ratio RD Hadamard patterns. (i) 
Zoom-in result of (h) within the dotted square region in (h). (j) Zoom-in result of ×  
(with the same zoom-in region) with the 4X compression-ratio RD Hadamard patterns. (k-n) 
The zoom-in results of ×  (with the same zoom-in region) with 4X compression ratio in 
the varying SNR cases. (o) The result of ×  with the 16X compression-ratio RD 
Hadamard patterns. (p) Zoom-in result of (o) within the dotted square region in (o). (q) Zoom-
in result of ×  (with the same zoom-in region) with the 16X compression-ratio RD 
Hadamard patterns. (r-u) The zoom-in results of ×  (with the same zoom-in region) 
with 16X compression ratio in the varying SNR cases. 

In addition, we compared the FCL with other FCL-based network architectures to explore 
if the FCL is an appropriate choice to learn the inverse model. Figure. S3 shows a comparison 
of the accuracy of the inverse model learned by the FCL and four other FCL-based network 
architectures, termed 3FCL, FCL+1-Level U-Net, FCL+3-Level U-Net and FCL+5-Level U-
Net as shown in Fig. S3 (a). 3FCL is the network with 3 FCLs connected in series. FCL+1-
Level U-Net is the FCL connected with the U-Net that does not have any down sampling. 
FCL+3-Level U-Net is the FCL connected with the U-Net that has 2 down-sampling steps. 
FCL+5-Level U-Net is the FCL connected with the U-Net that has 4 down-sampling steps. In 
all cases, the networks were trained in a single-step to specifically focus on the first-step 
training. The FCL has the best performance in all cases in Fig. S3 (b-g) and the extra 
convolutional layers in FCL+1-Level U-Net, FCL+3-Level U-Net and FCL+5-Level U-Net 
actually decrease the network’s performance. The degradation is moderated as the appended 
U-Net goes deeper. Thus, the performance may ultimately reach the FCL, but deeper 
networks require more parameters to be trained and more computing power. Therefore, the 
FCL itself has a good balance between precision and concision to estimate the inverse model. 
Figure S3 (b-g) also demonstrates that the 3FCL has the worst overall performance. This is 
reasonable since the added nonlinearity from the extra FCL layers with the nonlinear 
activations is not reflective of the physical model. However, the nonlinearity added by 3FCL 
is helpful for nonlinear models, which will be discussed in Supplementary Section 3. 
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Fig. S3. The comparison among the FCL and the other 4 FCL-based network architectures 
(3FCL, FCL+1-Level U-Net, FCL+3-Level U-Net and FCL+5-Level U-Net) to estimate the 
inverse model as a function of SNR. (a) The network architectures of 3FCL, FCL+1-Level U-



Net, FCL+3-Level U-Net and FCL+5-Level U-Net. (b) The RMSE of the predictions with a 
2X compression ratio, (c) the SSIM of the predictions with a 2X compression ratio, (d) the 
RMSE of the predictions with a 4X compression ratio, (e) the SSIM of the predictions with a 
4X compression ratio, (f) the RMSE of the predictions with a 16X compression ratio, (g) the 
SSIM of the predictions with a 16X compression ratio. The error bars represent the standard 
deviation of the RMSE or SSIM of the testing images with respect to the ground truth. 

3. Image de-autocorrelation with TST-DL as a nonlinear model 

For the reconstruction cases in the main manuscript, the imaging model was linear such that 
the forward operator can be described as a 2D matrix. Thus, the forward model and its inverse 
could both be implemented with matrix multiplication. TST-DL is effective at handling these 
imaging models since the FCL in the first-step training corresponds to matrix multiplication. 
The incorporation of the physics priors of a nonlinear model in a neural network is a difficult 
proposition. Alternatively, linearization of the model would lead to model mismatch errors 
described previously. Therefore, we would like to explore the capability of TST-DL to handle 
nonlinear imaging models with the image de-autocorrelation problem as a test case. Image 
autocorrelation is a nonlinear model such that the inverse process, image de-autocorrelation is 
also a nonlinear process which cannot be described as matrix multiplication. One of the 
important applications of image de-autocorrelation is to reconstruct the image through 
scattering medium [7] by solving a phase-retrieval problem from the Fourier-domain 
magnitude measurement [8, 9]. The handwritten numbers in the MNIST database [10] were 
used as the ground-truth images. The raw images in MNIST were resized from 28×28 to 
64×64 pixels. 10,000 images from the training dataset in MNIST were used as the training 
dataset, 2,000 images from the testing dataset in MNIST were used as the validating dataset 
and another 2,000 images from the testing dataset in MNIST were used as the testing dataset. 
Then, the image autocorrelation was applied to each of the images. White Gaussian noise was 
added to the autocorrelation image to result in either 21 dB or 6 dB SNR.  The vectorized 
autocorrelated images were used as the input of TST-DL and the outputs of the network were 
the de-autocorrelated images. Each step in TST-DL ran 50 epochs. In order to handle 
nonlinear models, a slight modification is made to TST-DL by using three FCLs connected in 
series instead of a single FCL in the first-step training (3FCL). The additional FCLs with 
ReLU activation functions add nonlinearity to the first-step training to accommodate the 
nonlinear inverse problem.  

Image de-autocorrelation has been achieved through phase-retrieval algorithms [7]. 
Therefore, we compare the results from TST-DL with those from the Gerchberg-Saxton 
phase-retrieval algorithm [8]. Figure S4 shows the reconstruction results from the TST-DL 
approach with either one or three FCLs in the first step training. These results are compared 
with the Gerchberg-Saxton algorithm with two levels of additive white Gaussian noise. 
Intermediate results after the first step of training are included to directly compare the single 
FCL versus three FCLs.  

From the results, it is evident that TST-DL is much more robust than the phase retrieval 
algorithm; the phase retrieval algorithm struggles to converge to the correct solution when the 
autocorrelation data are noisy. The results also show that TST-DL using three FCLs in the 
first step performs better than TST-DL using a single FCL. This is because of the added 
nonlinearity in the 3FCL case. The RMSE and SSIM (Fig. S4 (k) and (L)) further 
demonstrate the outperformance of TST-DL over the phase retrieval algorithm and the 
outperformance of the TST-DL with 3FCL in the first step over the TST-DL with a single 
FCL in the first step. It also means that TST-DL is able to handle a nonlinear inverse imaging 
problem with a slight modification. 
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Fig. S4. Image de-autocorrelation results of ten representative images in the testing dataset 
from MNIST. (a-j) Ground-truth images. (a1-j1) Autocorrelation images with 21dB SNR of 



noise. (a2-j2) Reconstructed images from the phase-retrieval algorithm in the 21dB SNR-of-
noise case. (a3-j3) Intermediate reconstructed images from the first-step training in TST-DL 
using a single FCL in the 21dB SNR-of-noise case. (a4-j4) Final reconstructed images from 
TST-DL (using a single FCL in the first step) in the 21dB SNR-of-noise case. (a5-j5) 
Intermediate reconstructed images from the first-step training in TST-DL using 3 FCLs in the 
21dB SNR-of-noise case. (a6-j6) Final reconstructed images from TST-DL (using 3 FCLs in 
the first step) in the 21dB SNR-of-noise case. (a7-j7) Are the same as (a1-j1) except for the 6dB 
SNR of noise. (a8-j8) Are the same as (a2-j2) except for the 6dB SNR of noise. (a9-j9) Are the 
same as (a3-j3) except for the 6dB SNR of noise. (a10-j10) Are the same as (a4-j4) except for the 
6dB SNR of noise. (a11-j11) Are the same as (a5-j5) except for the 6dB SNR of noise. (a12-j12) 
Are the same as (a6-j6) except for the 6dB SNR of noise. (k) RMSE and (L) SSIM of the 
reconstructed images in the testing dataset with respect to the ground truth from the listed 
approaches in both the 21dB and 6dB SNR-of-noise cases. The scale bar denotes 20 pixels. 
The error bars represent the standard deviation of the RMSE or SSIM of the testing images 
with respect to the ground truth. 

4. Experimental single-pixel imaging results at the 256X compression ratio 

Figure S5 shows representative ground-truth images from the testing dataset as well as the 
corresponding reconstructed images from TwIST, PPB-DL, OST-DL and TST-DL at the 
256X compression ratio. Quantitative comparison was made by calculating the mean and the 
standard deviation of RMSE and SSIM between the final reconstructed images and the 
ground-truth images in the testing dataset as shown in Fig. S5 (k). Qualitatively and 
quantitatively, the PPB-DL, OST-DL and TST-DL approaches achieve better results than 
TwIST where the results from TwIST do not reconstruct any number. The T-Test on the sets 
of RMSE and SSIM of TwIST, PPB-DL, OST-DL and TST-DL was also done to evaluate 
their RMSE and SSIM quantitative results as shown in Table S1. For PPB-DL and TST-DL, 
the RMSE of the TST-DL and the RMSE of the PPB-DL are statistically significant, but the 
SSIM of the TST-DL and the SSIM of the PPB-DL are not statistically significant. For OST-
DL and TST-DL, the RMSE of the OST-DL is slightly lower than that of the TST-DL (the p 
value in the T-Test is 0.0349 in Table S1), but the SSIM of the TST-DL and the SSIM of the 
OST-DL are not statistically significant.  

Table S1. The T-Test on the sets of RMSE and SSIM of TwIST, PPB-DL, OST-DL and TST-DL at the 16X 
and 256X compression ratios. 

The compression ratio Comparisons RMSE / SSIM p value in the T-Test 

16X 

TwIST vs TST-DL 
RMSE (TST-DL wins) 2.535×10-57 

SSIM (TST-DL wins) 3.578×10-97 

PPB-DL vs TST-DL 
RMSE (TST-DL wins) 6.330×10-11 

SSIM (TST-DL wins) 5.357×10-9 

OST-DL vs TST-DL 
RMSE (TST-DL wins) 1.096×10-44 

SSIM (TST-DL wins) 5.323×10-41 

256X 

TwIST vs TST-DL 
RMSE (TST-DL wins) 3.358×10-34 

SSIM (TST-DL wins) 4.570×10-58 

PPB-DL vs TST-DL 
RMSE (TST-DL wins) 5.824×10-9 

SSIM (comparable results) 0.4313 

OST-DL vs TST-DL 

RMSE (comparable 
results) 

0.0349 

SSIM (comparable results) 0.6156 
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Fig. S5. Experimental results on single-pixel imaging with the 256X compression ratio. (a-j) 
Ground-truth images. (a0-j0) Reconstructed images in TwIST. (a1-j1) Initial image guesses as 
the inputs of PPB-DL. (a2-j2) Final reconstructed images in PPB-DL. (a3-j3) Intermediate 
images after the FCL in OST-DL. (a4-j4) Final reconstructed images in OST-DL. (a5-j5) 
Intermediate images after the FCL in TST-DL. (a6-j6) Final reconstructed images in TST-DL. 
(k) RMSE and SSIM between the final reconstructed images and the ground-truth images in 
the testing dataset for TST-DL, OST-DL, PPB-DL and TwIST. The error bars represent the 
standard deviation of the RMSE or SSIM of the testing images with respect to the ground 
truth. 

5. Comparison between TST-DL and OST-DL with an auxiliary loss function 
(Multi-outputs OST-DL) 



The comparison between the TST-DL and Multi-outputs OST-DL is made with three imaging 
cases. For Multi-outputs OST-DL, an auxiliary/supervised loss is added after the FCL in 
OST-DL and  is trained together with the final loss [11]. 

The first case is shown in Fig. S6 for the simulated single-pixel imaging with the 4X 
compression RD Hadamard patterns and with varying SNR levels of noise added to the 
measurement data. The results show that in the noise-free case, Multi-outputs OST-DL 
performs a little better than TST-DL. However, as the level of noise increases, TST-DL starts 
to perform better than OST-DL as shown in the reconstructed results of the representative 
image and Fig. S6 (a) and (b) for quantitative comparison using RMSE and SSIM. Besides, 
Multi-outputs OST-DL runs into a higher overfitting issue than TST-DL as shown in Fig. S6 
(f), (i), (l) and (o). 
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Fig. S6. Comparison between TST-DL and Multi-outputs OST-DL with the RD Hadamard 
patterns at the 4X compression ratio with varying SNR levels of noise (-5dB, 0dB, 10dB and 
the noise-free case). (a) RMSE of the reconstructed results in both TST-DL and Multi-outputs 
OST-DL at varying SNR levels of noise. (b) SSIM of the reconstructed results in both TST-DL 



and Multi-outputs OST-DL at varying SNR levels of noise. (c) The ground truth of a 
representative image. (d) The intermediate reconstructed image after the FCL, and (e) the final 
reconstructed image in OST-DL in the 10dB SNR-of-noise case. (f) The RMSE and SSIM of 
the reconstructed images from both the training and validating data during the training process 
in Multi-outputs OST-DL in the 10dB SNR-of-noise case for overfitting analysis. (g-i) Are the 
same as (d-f) except for the TST-DL approach. (j-o) Are the same as (d-i) except for the 0-dB 
SNR case. The error bars represent the standard deviation of the RMSE or SSIM of the testing 
images with respect to the ground truth. 

The second case is shown in Fig. S7 for the simulated single-pixel imaging with the 4X 
compression random Hadamard patterns and with varying SNR levels of noise added to the 
measurement data. The single-pixel imaging with compressed random Hadamard patterns is 
harder than that with compressed RD Hadamard patterns in terms of image reconstruction [1]. 
The results show that in all the four SNR levels of noise, TST-DL performs better than Multi-
outputs OST-DL as shown in the reconstructed results of the representative image and Fig. S7 
(a) and (b) for quantitative comparison using RMSE and SSIM. Again, Multi-outputs OST-
DL runs into a higher overfitting issue than TST-DL as shown in Fig. S7 (f), (i), (l) and (o). 
Interestingly, while the Multi-outputs OST-DL performed better in the RD Hadamard case at 
low noise levels (Fig. S6), the same did not hold true for the random Hadamard model. This 
implies that as the model becomes less ideal (the inverse problem is more ill-posed), the 
auxiliary/supervised loss function becomes less effective. 
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Fig. S7. Comparison between TST-DL and Multi-outputs OST-DL with the random Hadamard 
patterns at the 4X compression ratio with varying SNR levels of noise (-5dB, 0dB, 10dB and 
the noise-free case). (a) RMSE of the reconstructed results in both TST-DL and Multi-outputs 
OST-DL at varying SNR levels of noise. (b) SSIM of the reconstructed results in both TST-DL 
and Multi-outputs OST-DL at varying SNR levels of noise. (c) The ground truth of a 
representative image. (d) The intermediate reconstructed image after the FCL, and (e) the final 
reconstructed image in OST-DL in the 10dB SNR-of-noise case. (f) The RMSE and SSIM of 
the reconstructed images from both the training and validating data during the training process 
in Multi-outputs OST-DL in the 10dB SNR-of-noise case for overfitting analysis. (g-i) Are the 
same as (d-f) except for the TST-DL approach. (j-o) Are the same as (d-i) except for the 0-dB 
SNR case. The error bars represent the standard deviation of the RMSE or SSIM of the testing 
images with respect to the ground truth. 

The third case is shown in Fig. S8 for the experimental single-pixel imaging with 16X 
random grayscale illumination patterns. Qualitatively, both TST-DL and Multi-outputs OST-
DL approaches achieve good reconstructed results as shown in Fig. S8 (a0-j0), (a1-j1), (a2-j2) 
and (a3-j3). The quantitative results in Fig. S8 (k) show that TST-DL still performs better than 



Multi-outputs OST-DL in terms of RMSE and SSIM. Again, Multi-outputs OST-DL runs into 
a higher overfitting issue than TST-DL as shown in Fig. S8 (l) and (m). 
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Fig. S8. Comparison between TST-DL and Multi-outputs OST-DL in experimental single-
pixel imaging with the 16X compression-ratio random grayscale illumination patterns. (a-j) 
Ground-truth images. (a0-j0) Intermediate images after the FCL in Multi-outputs OST-DL. (a1-
j1) Final reconstructed images in Multi-outputs OST-DL. (a2-j2) Intermediate images after the 
FCL in TST-DL. (a3-j3) Final reconstructed images in TST-DL. (k) RMSE and SSIM between 
the final reconstructed images and the ground-truth images in the testing dataset for TST-DL 
and Multi-outputs OST-DL. (l) The RMSE and SSIM of the reconstructed images from both 
the training and validating data during the training process in TST-DL for overfitting analysis. 
(m) Is the same as (l) except for the Multi-outputs OST-DL case. The error bars represent the 
standard deviation of the RMSE or SSIM of the testing images with respect to the ground 
truth. 

6. Reducing the size of the training dataset in TST-DL 

Because TST-DL a large training dataset is not always available for real cases, the size of the 
training dataset is also a key factor in DL frameworks. Therefore, we test the impact of the 
size of the training dataset in the TST-DL to find a reasonable size of the training dataset 
while still maintaining good reconstruction results. 
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Fig. S9. Reducing the size of the training dataset. (a) The RMSE and SSIM of the TST-DL 
results with 625, 1,250, 2,500, 5,000 and 10,000 training images. (b) The ground truth of the 
oil-tank image in the testing dataset and fine detail in the red square. (c) The TST-DL 
prediction of the image and the fine detail in (b) with 625 training images. (d) The TST-DL 
prediction of the image and the fine detail in (b) with 1,250 training images. (e) The TST-DL 
prediction of the image and fine detail in (b) with 2,500 training images. (f) The TST-DL 
prediction of the image and the fine detail in (b) with 5,000 training images. (g) The TST-DL 
prediction of the image and the fine detail in (b) with 10,000 training images. The error bars 
represent the standard deviation of the RMSE or SSIM of the testing images with respect to the 
ground truth. 

Figure S9 (a) shows the TST-DL performance of the prediction in the same testing dataset 
with the RD Hadamard patterns at the 4X compression ratio in terms of RMSE and SSIM 
with 625, 1,250, 2,500, 5,000 and 10,000 training images. The results show that with the 
decrease of the number of training samples, the TST-DL performance drops but still remains 
reasonably good at the case of 2,500 training images. Figure S9 (c-g) show the reconstruction 
results of the same image in the testing dataset with 625, 1,250, 2,500, 5,000 and 10,000 
training images respectively together with the ground-truth image in Fig. S9 (b). The image 
becomes clearer and the detail is better reconstructed with the increase of the number of 
training samples. Qualitatively, the case of 2,500 training images has a reasonably good 
reconstruction result, which is consistent with the quantitative results in Fig. S9 (a). Overall, 
with these results, it is evident that TST-DL can still perform well with a training dataset size 
that can be reasonably acquired experimentally. However, the precise size of the training 
dataset will likely depend on several factors, including the size of the image, model ill-
posedness and system noise. 

 
 

7. Computational complexity of the DL approaches 

Table S2 shows the number of trainable parameters, epoch number, flop counts and 
prediction time (ms per image) of the DL approaches in the single-pixel imaging with 4X RD 
Hadamard patterns.  

 
 
 



Table S2. Number of trainable parameters, epoch number, flop counts and prediction time (per image) of the 
DL approaches in the single-pixel imaging with 4X RD Hadamard patterns. 

Approach No. of trainable parameters Epoch No. Flop counts 
Prediction time  

(ms per image) 

TST-DL 

Step 1: 4,206,592 100 8,478,755 0.44 

(final prediction 
from step 2) Step 2: 1,944,517 100 12,323,660 

OST-DL 6,142,917 200 12,348,253 0.44 

PPB-DL 

1,936,325 

(parameters from the 
physics priors not included)  

100 

3,869,509  

(extra 8,384,512 for 
the initial image guess) 

0.46 

DCAN 4,214,721 200 8,494,880 0.25 

Two-step 
DCAN 

Step1: 4,206,592 100 8,478,755 0.26 

(final prediction 
from step 2) Step2: 16,321 100 8,470,287 

Multi-outputs 
OST-DL 

6,142,926 200 12,348,285 0.46 

 
For the one-step training strategies (OST-DL and DCAN), they run 200 training epochs 

for a fair comparison with the two-step training strategies (TST-DL and Two-step DCAN) 
which run 100 epochs in each step. DCAN and Two-step DCAN have fewer trainable 
parameters, flop counts and prediction time than TST-DL but the performance of DCAN and 
Two-step DCAN are poorer than TST-DL since the deeper U-Net structure with the skip 
connections is better able to capture and preserve image features. Since the focus of this paper 
is on the two-step training approach and the need for physics priors, we have focused our 
analysis on the U-Net structure in the revised manuscript. PPB-DL does not have the trainable 
parameters from the FCL and therefore has fewer trainable parameters and flop counts. 
However, PPB-DL has the physics priors of the imaging model (the forward model matrix) 
which has the comparable number of parameters as the FCL in TST-DL, the extra 
(16×64+16×64-1)×642 (= 8,384,512) flop counts for the initial image guess. Besides, the 
input images to PPB-DL were already normalized (no need to use the batch normalization 
layer). Therefore, for a fair comparison, PPB-DL runs 100 epochs. All the approaches can 
achieve fast image prediction with a prediction time of less than 1ms per image on a NVIDIA 
Quadro M4000 GPU with an 8GB of memory. 

Table S3. A list of the abbreviations used in the manuscript and the supplementary material. 

Abbreviations Full names 

DL deep learning 

TST-DL two-step-training deep learning 

FCL fully-connected layer 

3FCL three fully-connected layers connected in series 

DCAN deep convolutional auto-encoder network 

OST-DL one-step-training deep learning 

Multi-outputs OST-DL OST-DL with an auxiliary/supervised loss function after the FCL 

PPB-DL physics-prior-based deep learning 

LSQR an iterative L2 norm minimization approach 

TwIST two-step iterative shrinkage/thresholding 

FCL+1-Level U-Net the FCL connected with the U-Net that does not have any down sampling 



FCL+3-Level U-Net the FCL connected with the U-Net that has 2 down-sampling steps 

FCL+5-Level U-Net the FCL connected with the U-Net that has 4 down-sampling steps 

RD Russian doll 

MSE mean squared error 

RMSE root mean squared error 

DSSIM difference of the structural similarity index 

SSIM structural similarity index 

SNR signal-to-noise ratio 
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