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Light propagation in a three-dimensional Rydberg gas with a nonlocal optical response
Appendix: Susceptibility in £ space
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To derive the susceptibilities x; (Eq.(16)) and ¥, (Eq. (17)) in k space,applied the following rules of the Fourier
= \/%foo f(z)e~*dg):
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(i) Convolution theorem: For f(z) = fi(z) * fo(x) = [*_ fi(2)f2(x — 2')da’, where * denotes the convolution
operation, then:

and

Flfife] = fl(k)*fQ(k);
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(ii) Translation/ time-Shifting: For any real number zg, we have

Flf(x = z0)] = e~ f(k);
(iii) Modulation/ frequency shifting: For any real number ko, if f/(z) = %o f(z), then
FIf' ()] = [k — ko);
(iv) Time scaling: For a nonzero real number a,
1 -
Flf(az)] = ﬂf

We now perform a Fourier transform on the susceptibility. For the local term, we have
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A0 (k) + V2rna* (K)o (K) ) + E(K)
Ao + @noﬁ(())) B(k)

= uE(k). (1)

I
/\/_\

2

Here Ao = 296/(Q2 — 20T6), o* (r — ') = girgims=az (A4 (r = 1) £ A_(r — 1)),
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with B = (1 +iv/3)/2 and
G (k) = F[oy(r)]
T T2 —02)7 |1+ (r/RE)S| T 2AT(2T6 —02)” |1+ (r/RE)S
07 V2 B )
- 2¢F(2;'qraf93) (RO FIRRS) £ (Ry VP F kR, ).
Because
02 Vor B )
a™(0) = 2ir(2§m—93) o lm ((B))fIkRy ]+ (R,)* fIRR,])
. gQ%/ﬂ ) .
= s oz () ).
SO

Xt = Ao+ V2mnat(0)
= Ao+ A1 (R FIRRS] £ (R )P fIkRy )

with A; = mgQ2n/(6i['(2iT'5 — Q2)). Obviously, y; is k independent.
For the the nonlocal term:
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with X, (k) = 41 [(R))3f(k + K|R;) — (R, )®f(|k + K|R; )], which is k dependent.



