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Supplementary section:
1. EIT Formalism

In the case of laser exposure, the Hamiltonian of Λ-type atoms is given by [50, 51, 55]:
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Note that (Δp ― Δc) is the total detuning parameter. 

The density operator ρ consists of all state dynamics of the laser driven atomic system. The time-dependent density 
matrix equation is described by the Liouville equation, namely [45, 48, 49, 51]:
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where, Γ is the matrix of the damping coefficients. Then, density matrix elements can be obtained according to the 
following differential equations [48, 51]:
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Including the following conditions [48, 51]:
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Here, the total decay rates are added phenomenologically in the density matrix equations. On the other hand, the 
steady-state condition leads to simplifying the relations, such that 13 12 23       or in the case of the weak probe 
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implying 11 1  , and because of continuity principle (ρ11 + ρ22 + ρ33=1) then ρ22≈ρ33≈0. Thus, the steady state 
solution is obtained as below [48, 51]:
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Moreover, the time-dependence solution for ρ12 and ρ31 are given as below [50, 65]:
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Meanwhile, the polarization of the atomic medium induced by the applied field is given by [50, 66]:
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Where, N is the density of the EIT nanocrystals in volume V.

In general, the linear susceptibility contains most of the important features of EIT [50, 55, 65]:
' ''i                                                                                    (12)

Where, χ′ and χ′′ are real and imaginary parts of susceptibility ' ''i     , correlated to the phase shift per unit 
length and the absorption coefficient of the pulsed laser field, respectively.

The real and imaginary parts of the susceptibility are [51]:
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2. Steps of model
Fig. S.1 summarizes the sequential modeling steps of EIT doped FBG as a fast optical switch.

Fig. S.1. Sequential steps to model EIT doped FBG as a fast optical switch to find optimal parameters (Ωc, N, L and 𝛾31) based 
on the criteria: max peak transmission, min rise time where FBG-EIT satisfies 𝑛𝐿 = 𝑛𝐻 condition at Ω𝑐 = Ω𝑠

𝑐


