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Photon-phonon spin-orbit interaction
in optical fibers: supplemental
document
The main goal of this chapter is to present the method of obtaining the perturbed optical modes
in the vicinity of the acousto - optic resonance using the perturbation approach to the waveguide
equation.

1. THE OPTICAL WAVEGUIDE EQUATION IN THE PRESENCE OF A TRANSVERSE
CIRCULARLY POLARIZED FLEXURAL ACOUSTIC WAVE

Let us consider the fiber with permittivity implied in Eq. (2). As is well known, the propagation
of the light beam through a dielectric medium can be described by the vector wave equation:

∇2E− 1
c2

∂2

∂t2 [ε(r, t)E] = −∇
(
E · ∇ ln ε(r, t)

)
. (S1)

where ∇ = (∂x, ∂y, ∂y), c is the speed of light in vacuum, E is the electric field. Since one has the
following estimation for derivatives with respect to time

ε
∂E
∂t

∝ εcoωE, E
∂ε

∂t
∝ εco∆

u0
r0

Ωt , (S2)

where ω and Ω is the frequency of optical and acoustical waves, respectively, and allowing for
experimentally justified relations Ω/ω � 1 and r0/u0 � 1, one can disregard the derivative of
ε(r, t) with respect to time in Eq. (S1):

∂2

∂2t
[ε(r, t)E] ≈ ε(r, t)

∂2E
∂t2 . (S3)

The gradient term on the right - hand side of Eq. (S1), which describes the spin-orbit interaction
(SOI) of light [1], for weakly guiding fibers with ∆ ∼ 10−2 − 10−3, kr0 � 1 and Et � Ez has the
order of (∆/r2

0)Et, where ∆ is the optical contrast between core and cladding, r0 is the fiber core’s
radius, Et is the transverse component of the electric field and k = ω/c. Taking into account
that the order of the acoustically - induced term in Eq. (S1) is k2∆u0εcoEt/r0, where u0 is the
acoustic amplitude, one can disregard the effect of the SOI of light in a practically realizable case
εcok2u0r0 � 1. Using Eq. (S3) enables one to obtain the following scalar wave equation in the
transverse field: [

∇2 − ε(r, t)
c2

∂2

∂t2

]
Et(r, t) = 0 . (S4)

Using the standard ansatz:

Et(r, t) =
∞

∑
−∞

ẽm(r, ϕ) · ei
[
(β+mK)z−(ω+mΩ)t

]
, (S5)

where β is the desired propagation constant and K is the acoustic wave - vector, one can exclude t
and z variables in the scalar wave equation, thus obtaining the following infinite set of equations
in amplitudes ẽm:[

∇2
t + ε0k2

m − (β + mK)2
]

ẽm +
1
2

(
k2

m−1eiΣϕ ẽm−1 + k2
m+1e−iΣϕ ẽm+1

)
= 0 , (S6)

where ∇t = (∂/∂x, ∂/∂y), km = (ω + mΩ)/c and Σ specifies the handedness of acoustic circular
polarization (acoustic spin angular momentum (SAM)). Introducing the state - vector |Ψ〉 =
∑∞
−∞ ẽm(r, ϕ)|m〉, with |m〉 = (..., 0, 1, 0, ...)T, where the unity is placed at the m - th position, T

stands for transposition, Eq. (S6) can be brought to the form of an eigenvalue equation:(
Ĥ0 + V̂AOI

)
|Ψ〉 = β2|Ψ〉 , (S7)



where

Ĥ0 =
∞

∑
−∞

(
∇2

t + ε0k2
m − 2mKβ−m2K2)|m〉〈m| , (S8)

and

V̂AOI = ξ
∞

∑
n=−∞

(
k2

n−1eiΣϕ|n〉〈n− 1|+ k2
n+1e−iΣϕ|n〉〈n + 1|

)
, (S9)

where ξ = εco∆ u0
r0

f ′, f (r) is the fiber’s profile function [2], the prime stands for the derivative with
respect to the argument .The first operator Ĥ0 describes the optical modes of the unperturbed
circular fiber, while the second one V̂AOI accounts for the acousto - optic interaction. Since
Ĥ0 ∝ k2ε and V̂AOI ∝ k2∆u0εco/r0, it follows V̂AOI/Ĥ0 ∝ ∆u0/r0 � 1, so that for all practically
reasonable parameters of the system one can use the perturbation theory for solving Eq. (S7).

2. RESONANCE PERTURBATION THEORY AND RESONANCE OPTICAL FIBER MODES

The zero -order eigenvalue equation, (Ĥ0 − β
2
)|Ψ〉 = 0, or, equivalently,(

∇2
t + ε0k2

m

)
ẽm = (β + mK)2ẽm , (S10)

yields the standard optical modes of the unperturbed circular fibers with all the possible frequen-
cies and azimuthal numbers, which can be chosen in the form of circularly polarized optical
vortices (OVs) |m, σ, `〉:

|m, σ, `〉 = F`(r) exp(i`ϕ)(1, iσ)T|m〉 , (S11)

Here m determines the optical frequency of the OV through ωm = ω + mΩ, σ = ±1 indicates
the sign of optical circular polarization, ` is an integer topological charge and F`(r) is the known
radial function [2], which is expressed through the Bessel functions of the first kind in the core
and the modified Bessel functions in the cladding for the implied here step - index fibers. The
radial number is omitted. Importantly, the corresponding propagation constants:

βm,`(K) = β̃` −mK. (S12)

where β̃` is the known scalar propagation constant [2], prove to be modified so that they become
dependent on the acoustic K - vector. The spectrum in Eq. (S12) is degenerate at resonance values
of K, where the corresponding spectral curves intersect (see Fig. (S1)):

βm,`(K) = βm′ ,`′ (K) . (S13)

Here the resonance values of acoustic wave number are given by:

K =
β̃` − β̃`′

m−m′
. (S14)

This kinematic condition determines the unperturbed optical states |m, σ, `〉 and |m′, σ′, `′〉 that
could be coupled efficiently by the acoustic perturbation (S9). Further we assume a few-mode
fiber that supports the propagation of only the modes with |`| = 0, 1. For such a system there exist
three resonance points (see Fig. (S1)). In the vicinity of such resonance points, a highly efficient
coupling of the corresponding zero-approximation modes takes place provided the dynamic
condition is fulfilled:

〈m, σ, `|V̂AOI|m′, σ′, `′〉 = ηδσ′ ,σ

(
k2

m−1δm,m′−1δ`−`′ ,−Σ + k2
m+1δm,m′+1δ`−`′ ,Σ

)
6= 0 , (S15)

Here the standard scalar product with the integration over the total transverse cross - section of
the fibre is implied, η = ∆u0εco

r0

√∫ ∞
0 RF2

` dR
√∫ ∞

0 RF2
`′ dR

and δl,n is the Kronecker symbol. This condition

entails the following selection rules that guarantee the coupling of unperturbed fiber modes:

σ′ = σ, m′ = m± 1, `′ = `± Σ . (S16)

Here the first expression is due to the scalar nature of the AOI - operator in Eq. (S9), the second one
corresponds to the shift of the incident optical frequency, while the last one describes hybridization
of the acoustic spin and optical orbital degrees of freedom. From Eq. (S16) one can readily see
that the optical states near the second resonance point ”C” in Fig. (S1) do not obey the frequency
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selection rule and thus are not coupled by the perturbation. On the contrary, identically polarized
states with σ = ±1 in the vicinity of point ”A”

|0, σ, 0〉, | − 1, σ,−Σ〉 , (S17)

and states in the vicinity of point ”B”

|0, σ,−Σ〉, |+ 1, σ, 0〉, . (S18)

obey all the above given selection rules, thereby forming the two sets of basis for the perturbation
theory. Please note that these two resonances occur at the same value of the acoustic K - vector :

K = β̃0 − β̃1 . (S19)

Fig. S1. (Color online) Inset (a) shows zero- -order propagation constants in Eq. (S12) as a func-
tion of the acoustic K- -vector.The points of their intersection are the resonance points, in the
vicinity of which even a small perturbation can cause a strong coupling of the corresponding
zero-order modes |m, σ, `〉. The states near resonance points A and B, unlike the modes in the
vicinity of point C, obey both the kinematic and dynamic resonance conditions. Insets (b) and
(c) demonstrate the anticrossing of spectral branches due to hybridization of zero-order modes
near resonance points A and B, respectively.

As is known [3, 4], to establish the structure of perturbed fiber modes near the points of
accidental degeneracy, one has to build the matrix Hij of the total operator in wave equation (S7)
over the basis of such eigenvectors of Ĥ0 that obey both the kinematic and dynamical conditions.

In this way, using Eq. (S15) and allowing for:

〈m, σ, `|Ĥ0|m′, σ′, `′〉 =
[
β̃2
` − (β + mK)2]δm′ ,mδσ′ ,σδ`′ ,` , (S20)

one can show that near the first resonance ”A” the matrices built over two- -dimensional subspaces
of the right and left circular polarizations have the same form:

ĤA =

 β̃2
0 − β2 α0

α−1 β̃2
1 − (β− K)2

 , (S21)

where αk = k2
mη. The solutions x = (x1, x2)T of the eigenvalue equation:

Ĥx = 0 , (S22)

give the desired resonance optical modes through |Ψσ〉 = x1|0, σ, 0〉+ x2| − 1, σ,−Σ〉. Linearizing
the eigenvalue equation near the resonance point [K, β̃0]: −2β̃0δ0 α0

α0 2β̃1(ε− δ0)

 x = 0 , (S23)
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where the obvious approximation α0 ≈ α−1 is used and the following detunings are introduced:

ε = K− K, δ` = β− β̃` , (S24)

we arrive at the following expressions for the resonance acoustically - driven fiber modes:

|Ψ(σ)
1 〉 =

[
sin θ|0, σ, 0〉+ cos θ| − 1, σ,−Σ〉

]
eiβ1z ,

|Ψ(σ)
2 〉 =

[
cos θ|0, σ, 0〉 − sin θ| − 1, σ,−Σ〉

]
eiβ2z . (S25)

As is seen, the modes in Eq. (S25) are linear combinations of the identically circularly polarized
Gauss-like fundamental mode and frequency down - shifted OV with topological charge −Σ. The
energy distribution within the hybrid modes is governed by the parameter 0 < θ 6 π/4 defined
as cos 2θ = ε/

√
ε2 + Q2. The parameter Q, which determine the coupling strength between

zero-order modes, equals to

Q =
k2

0∆εcou0

r0 β̃0

√∫ ∞
0 RF2

` dR
∫ ∞

0 RF2
`′dR

. (S26)

The propagation constants of modes (S25) are found to be:

β1,2 = β̃0 + ε± , (S27)

where ε± = (1/2)(ε±
√

ε2 + Q2).
Analogously, for the resonance point ”B” the matrix looks like:

ĤB =

 β̃2
1 − β2 α1

α0 β̃2
0 − (β + K)2

 , (S28)

and the corresponding eigenvalue equation linearized near the point [K, β̃1] reads as −2β̃1δ1 α0

α0 −2β̃1(ε + δ1)

 x = 0 , (S29)

which gibes rise to the second set of resonance fiber modes:

|Ψ(σ)
3 〉 =

[
sin θ|0, σ,−Σ〉 − cos θ|+ 1, σ, 0〉

]
eiβ3z ,

|Ψ(σ)
4 〉 =

[
cos θ|0, σ,−Σ〉+ sin θ|+ 1, σ, 0〉

]
eiβ4z . (S30)

The corresponding propagation constants are:

β3,4 = β̃1 − ε± , (S31)

It is easily seen that the modes in Eq. (S30) are superpositions of the identically polarized OV of
topological charge −Σ and frequency up - shifted Gauss-like fundamental mode. Naturally, at
the resonance ε = 0 both the strongest splitting of the propagation constants ±Q in Eqs. (S27)
and (S31) (see the inset (a) and (b) in Fig. (S1)) and the strongest hybridization of the partial states
within modes in Eqs. (S25) and (S30) at θ = π/4 take place.
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