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Abstract: This document provides supplementary information to “PhaseGAN: A deep-learning
phase-retrieval approach for unpaired datasets.” In this material, we elaborate on the architecture
of PhaseGAN. We also report and depict the results obtained by PhaseGAN when applied to the
validation (synthetic) and experimental dataset. Finally, we present an experimental validation
using well-known samples.

© 2021 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

1. PhaseGAN Architecture

This section describes the architecture used for PhaseGAN.
The generators used in PhaseGAN are U-Net [1] type end-to-end fully convolutional neural

networks. As shown in Fig. S1, the generator architecture consists of a contracting and expansive
path. In the contracting path, the spatial resolution is reduced, and the feature information
is increased. The contracting path in our model contains multiple convolutional layers with
kernel size 3 × 3, each followed by a ReLU activation function. Max pooling operations with
kernel size 2 × 2 are applied to 5 of the convolutional layers. After each max pooling, the
image size is reduced by 2, decreasing from 256 × 256 to 8 × 8 pixels in the lowest resolution.
The number of feature layers is doubled after each pooling operation. The extracted feature
information is relocalized in the expansive path by combining upsampled feature mapping with
the skip-connected high-resolution components from the contracting path. In the expansive path,
the resolution of the images is recovered by repeated application of transposed convolutions. The
transposed convolution outputs are then concatenated with the associated feature map from the
contracting path and then send into corresponding convolutional layers. The generator weights
are initialized by a pre-trained VGG11 encoder to improve model performance and accelerate the
training process [2].
The discriminators used in this work are PatchGAN discriminators similar to the ones used

in [3, 4]. They contain four convolutional layers with 4 × 4 convolutional filters, gradually
increasing the number of filters by a factor of 2 from 64 to 512. Each convolution layer is followed
by a batch normalization layer and a leaky RELU activation function with a slope of 0.2. The
discriminators are trained to distinguish real images from the ones faked by the generator. For an
image of size 256 × 256, the discriminator output a 30 × 30 matrix, where each matrix element
corresponds to a 70×70 image area, examining if this part is from the training dataset or not.
The PhaseGAN architecture was trained using the MAX IV computing cluster. We used



Fig. S1. Generator architecture of PhaseGAN. The contracting and expansive path of
the two PhaseGAN generators (MO and MD) are depicted here. The phase-retrieval
generator MO maps the hologram intensity in the detector domain to a complex
wavefront in the object domain, generating a two-channel output from a single channel
input. MD maps the propagated intensity in the detector plane to the measured detector
intensity, i. e., it maps one input channel to one output channel.

Nvidia Tesla V100 SXM2 GPU with 32 GB of RAM for all the training involved in this work.
For a given dataset, the speed of training is dependent on various elements, including the network
architecture, data loader, mini-batch size, and the memory of the devices. For the training of
metallic foam dataset using 32 GB memory and mini-batch size of 40, it took less than 10 hours
to go through 100 epochs. The reconstruction process is less time-consuming. It took 20 ms to
reconstruct 50 frames. Each generator contains 22.93 million learnable parameters, while the
discriminators have 2.76 M. The model sizes of the well-trained generator and discriminator are
460 MB and 55 MB, respectively.

We provide the PyTorch implementation of PhaseGAN, which is based on the architectures
from [4] and [2]. The PhaseGAN implementation is available at GitHub.

2. PhaseGAN results summary

This section presents the training strategy and results obtained for the validation (synthetic) and
time-resolved metallic-foam experiments.
PhaseGAN is an unpaired phase-reconstruction approach. To train on unpaired datasets,

PhaseGAN needs two cycles that use either detector measurements or phase-reconstructed objects
as input. Each of these cycles is required to be consistent, i. e., the input should be recovered at
the end of the cycle. The two PhaseGAN cycles with their intermediate steps for the validation
and experimental datasets are shown in Fig. S2. These steps include two generators MO and MD.
The MO learns the mapping between the measured detector intensity (�) to the object complex
wavefront (Ψ). The MD learns the mapping between the estimated intensity on the detector plane
to the actual measured intensity. Another intermediate step includes the physics of the image
formation via the propagator (N). N propagates the complex wavefront from the object plane
to the detector plane. The inclusion of the propagator is crucial to enhance the performance of



the phase-reconstructions obtained by PhaseGAN. Finally, Fig. S2 evidences the capability of
PhaseGAN to fulfil the cycle consistency.

Fig. S2. PhaseGAN cycle-consistency illustration for the (a) validation and (b)
experimental datasets. Inside the red box, the cycle from intensity measurements back
to intensity measurements is shown. The blue box depicts the complex-wavefront closed
cycle. The intermediate steps within each cycle are illustrated. Those intermediate
steps use MO, N, and MD.

We have performed several tests to understand the capabilities of PhaseGAN compared to
state-of-the-art DL approaches. Specifically, we have compared PhaseGAN to: i) classical
supervised learning approach using paired datasets, ii) adversarial supervised learning with
paired datasets using a pix2pix method [5], iii) standard CycleGAN [4], and iv) PhaseGAN
with UFRC = 0, denoted by PhaseGAN∗. For more details about the used methods, the reader is
referred to the main text. All these approaches use the same MO architecture to retrieve the phase.

One of the most simple tests to understand its capabilities is to look at phase profiles over areas
difficult to reconstruct, i. e., regions with a high variation of the phase profile over a small area.
The results for three line profiles are shown in Fig. S3. It can be seen that all five methods are



capable of reconstructing the homogeneous regions seen in the reference or oracle wavefield.
However, the main discrepancies were observed around the object edges.
Second, we report the statistical distributions of three quality metrics !2 norm, DSSIM, and

FRCM for the five DL approaches. For more details about these metrics, the reader is referred
to the main text. Smaller values of these three metrics correspond to better reconstructions.
Conversely, larger values evidence worse reconstructions. The distributions over 1000 validation
images for the !2 norm, DSSIM, and FRCM, are shown in Fig. S4(a), (b), and (c), respectively.
For each metric, we also include the best-performed and the worst-performed validation images
of each DL method. The left side of the figure depicts the ranked distribution for each metric
from smaller to larger values. The ranked distributions are independent for each of the DL
methods, e. g., the smallest value for a given metric and method does not have to be obtained
from the same input image as for another method with the same metric. The image patches on the
left (right) side of each ranked distribution show the best (worst) phase-retrieved results for each
DL approach. The frame colour follows the legend colour code for each method. As expected,
most of the methods perform better for clean-background, low-contrast, and less-detail images
than images with messy backgrounds, high contrast, and full of details. On the right side of
Fig. S4, the kernel-density estimations are depicted for each of the methods and metrics. These
distributions are calculated over the logarithmic distribution of values to enhance the differences
between the methods. One can see that PhaseGAN outperforms CycleGAN∗ and performs at
the level of current-state-of-the-art paired DL approaches when applied to the phase problem.
Furthermore, by comparing the phase profile and error distribution plots between PhaseGAN
and PhaseGAN∗, it becomes clear that the inclusion of FRC loss in the training process helped
PhaseGAN to achieve better results.

Finally, we display the PhaseGAN reconstruction results of five selected frames extracted from
a time-resolved X-ray imaging experiment in Fig. S5. This experiment studied the coalescence
of metallic-foam bubbles. This is a crucial process that determines the final structure of the
metallic foam [6]. The Intensity row corresponds to measurements performed with a MHz X-ray
imaging acquisition system based on a Shimadzu HPV-X2 camera. This system was capable
of recording single X-ray pulses provided by the Advanced Photon Source (APS). The phase
and attenuation rows correspond to the phase-retrieved results from PhaseGAN, which cannot
be provided by current methods. The last row in Fig. S5 shows a schematic illustration of the
coalescence process.
PhaseGAN provided a satisfactory solution for this condition, which can provide almost

real-time (kHz) phase reconstructions avoiding experimental artifacts in the absence of paired
image examples. PhaseGAN can also work as an alternative to the traditional iterative phase
reconstruction methods in the need for large volumes of data and rapid reconstructions.

3. Experimental validation with standard objects

The experimental validation of unpaired algorithms can be cumbersome in scenarios where
traditional phase-reconstruction approaches do not apply. In this section, we present an
experimental validation and comparison of the unpaired algorithms using well-known objects.
Using soda-lime glass spheres as well-known objects, we can generate ground-truth images from
measured holograms without requiring phase reconstructions. The here studied holograms were
measured at the European X-ray free-electron laser (EuXFEL) with 9.3 keV X-ray photons [7]. A
total of 893 holograms were measured with a propagation distance of 38 cm and an illuminated
area of 855×637 pixels, where the effective pixel size was 520 nm. Each of these holograms suffers
from the shot-to-shot noise described in the main text as a consequence of the stochastic process
that generates the X-ray free-electron laser (XFEL) radiation [8]. Examples of detector frames
are depicted in Fig. S6(a,b). This stochastic noise makes it difficult to obtain conventional phase
reconstructions. However, one can obtain phase reconstructions by using unpaired approaches



such as PhaseGAN.
To perform unpaired phase reconstructions, we trained CycleGAN, PhaseGAN∗, and

PhaseGAN using two independent datasets. The first dataset consisted of 3572 patches
from the measured holograms with 256 × 256 pixels. To obtain this dataset, we performed
data augmentation by randomly flipping, transposing, and rotating those patches. The second
dataset was generated by randomly positioning 80 `m soda-lime glass spheres without physical
superposition and using their well-known index of refraction at 9.3 keV [9]. The training process
with the two consistent cycles for PhaseGAN and PhaseGAN∗ is depicted in Fig S6(a). We
used the same phase-retrieval (MO) and detector (MD) networks as shown in Fig. S1 for all
three methods. To train these methods, we used 4 × Nvidia Tesla V100 SXM2 GPU with 32
GB of RAM running in parallel to have a mini-batch size of 150. The learning rates of the
generator and the discriminator were set to be 0.0002 and 0.0001, respectively, and were decayed
by 10 after every 150 epochs. It took 12 hours to complete the training of 500 epochs for each
method. We used UCyc =10 and UFRC =1 to train PhaseGAN. However, we set UFRC =0 for
PhaseGAN∗ and CycleGAN. To avoid aliasing artifacts due to the physical propagation while
training PhaseGAN∗ and PhaseGAN, we applied a 256 × 256 Tukey window (tapered cosine)
with cosine fraction U = 0.25 to the object images and zero-padded them into 512 × 512 before
propagation. The effects of this window in the training process are shown in Fig. S6(a).
To validate our results, we generated ground truth images or oracles by estimating the center

of the concentric holographic patterns. Then, we estimated the complex wave projection of
soda-lime glass spheres with 80 `m diameter when imaged with 9.3 keV X-ray photons. The
process to generate ground truth images is depicted in Fig. S6(b). A total of 100 validation images
were used for the results presented here. The reconstructed object images were cropped into 200
× 200 pixels for validation to avoid edge artifacts due to the physical propagation. Figure S6(c)
presents the line profile over a spherical feature for the three different methods. Finally, we
evaluate the !2, the DSSIM, and the FRCM metrics for all three methods. The kernel density
distributions for the three methods and three metrics are presented in Fig. S6(d). The mean
and standard deviation of these figures of merit are reported in Table S1. One can observe that
PhaseGAN clearly outperforms the other two methods. Thus, we conclude that adding the FRC
loss and the physics of the image formation is crucial to increase the performance of unpaired and
unsupervised phase reconstructions. Furthermore, these results are consistent with our synthetic
validation.

Table S1. Experimental validation with standard objects. The mean and sigma of the
metric distributions for the three unpaired methods are reported.

!2 DSSIM FRCM

×10−2 ×10−2 ×10−2

Mean Std Mean Std Mean Std

PhaseGAN 1.16 0.56 2.47 0.68 2.02 1.37

PhaseGAN∗ 1.76 0.81 3.24 0.75 2.67 1.47

CycleGAN 3.23 4.88 3.57 2.17 4.71 4.89
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Fig. S3. Phase-reconstructed line profiles by the five DL methods for three independent
validation samples. Segments of the oracle images are shown on top of each line-profile
plots, where the red path indicates the depicted line profile.



Fig. S4. Comparison of the ranked distribution (left) and the kernel density estimation
(right) of PhaseGAN (red), PhaseGAN∗ (green), CycleGAN (purple), paired (orange),
and pix2pix (blue) according to !2 norm (a), DSSIM (b), and FRCM (c).Insets shows
the best and worst reconstructed images for each DL method corresponding to the three
different metrics. The color of the insets box indicates the DL method being used.



Fig. S5. Clips of the supplementary movie (see Visualization 1, 2, and 3) showing two
bubble coalescence of metallic foam. The sketches on the bottom row illustrate this
process.



Fig. S6. Sphere validation. (a) PhaseGAN cycle consistency for the experimental
validation dataset. (b) Oracle or ground truth generation for a given hologram. (c)
Phase-reconstructed line profiles for the three unpaired DL methods. (d) Kernel
density estimation for the !2 norm, DSSIM, and FRCM metrics for PhaseGAN (red),
PhaseGAN∗ (green), and CycleGAN (purple).


