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Chirped dissipative solitons in driven optical 
resonators: supplemental document

1. Numerical methods

Numerical simulations are developed to determine if a cavity consisting of normal 
dispersion fiber, losses, a drive source, and a spectral filter can support chirped dissipative 
solitons.  The fiber is modeled by a detuned nonlinear Schrödinger equation incorporating 
dispersive and nonlinear phase modulations in addition to a term corresponding to the 
frequency detuning of the drive from the peak of the cavity resonance [1].  The fiber section is 
simulated with the standard split-step Fourier technique with the dispersive effects calculated 
in the Fourier domain and the nonlinear effects solved with a 4th order Runge-Kutta method.  
After the fiber section, the loss, drive, and spectral filter are added as lumped elements.  The 
initial cavity under consideration consists of 52.5 m of fiber with 𝑛2 = 3.2 × 10―20 𝑚
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𝑊 , 𝛽2

= 9688 𝑓𝑠2

𝑚 , and mode-field diameter of d=8.1 µm, total losses of 1.05 dB (as predicted for a 
typical experimental cavity), and a Gaussian spectral filter with 4-nm spectral bandwidth (and 
negligible dispersion).

Solutions are identified as stable if the field converges to a steady-state after a finite number 
of iterations around the cavity (see Supplementary Document, Section 4). For example, the 
chirped pulse solutions from Fig. 2 are stable, and the mean intensity of the electric field 
converges to a constant numerically limited value after 500 round-trips, which corresponds to 
125 µs for the 50-m cavity with a 4-MHz repetition rate (Fig. 2(a)). The simulations presented 
have a 100-ps temporal window. The results are unchanged with larger temporal windows. The 
cavity is seeded by Gaussian or random electric field initial conditions and multiple round trips 
are simulated.  The combination of 9 noisy and 6 Gaussian initial fields results in a sufficient 
number of stable solutions to establish clear boundaries between different solution types (see 
Supplementary Document, Section 4).

The chirp is evaluated through the application of anomalous GDD to the pulse, in keeping 
with the experimental practice of ‘dechirping’ the pulse with a grating pair dispersive 
compressor.  The chirp magnitude in units of ps2 is determined by the GDD required to 
maximize the pulse peak intensity (Fig. 2(b)).  In the example from Fig. 2, with a cavity with a 
2-nm spectral filter (intra-cavity drive power 11.4 W and detuning 1.36 rad), the intensity is 
smoothly maximized and indicates a positive chirp that corresponds to a GDD of 1 ps2.

For the dispersion-managed simulations the normal dispersion fiber is modeled as above, 
the anomalous dispersion fiber is modeled with 𝑛2 = 3.2 × 10―20 𝑚
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𝑊 , 𝛽2 = ―22946 𝑓𝑠2

𝑚
, and 

mode-field diameter of d=10.4 µm, and the third-order dispersion for both fibers is given by 𝛽3

= 0.1 × 106  𝑓𝑠3

𝑚 . The spectral filter has a 12th order super-Gaussian response with a full-width 
at half-maximum bandwidth of 4.25 nm.

To numerically model the resonance as a function of frequency for comparison with 
experiments we use a noise-seeded simulation in which the detuning is varied after each round 
trip at a rate determined by the experimental sweep time.  The continuous-wave intensity is 
averaged over 10 different random-intensity initial fields and plotted at each value of detuning 
(Fig. 3(h)).  See Supplementary Document, Section 14 for additional information.



2. Experimental methods

Experimentally, following the results of numerical simulations, a fiber resonator is 
designed to support chirped dissipative solitons.  The cavity consists of a total length of 150-m 
single-mode fiber with a net-dispersion that corresponds to 52.5-m of normal dispersion fiber 
(with 𝛽2 = 9688 𝑓𝑠2

𝑚 ).  An isolator ensures unidirectional operation and suppresses Brillouin 
scattering.  The drive is coupled into the cavity with a 5% fiber-format coupler, and the output 
is coupled out from a distinct 2% fiber coupler.  A 4.25-nm 12th order super-Gaussian fiber-
format spectral filter based on thin film technology is spliced into the cavity after the output 
coupler.  The drive consists of an intensity-modulated narrow-line fiber laser.  The intensity-
modulator is driven with 10-ns pulses with a 750-ns period matching that of the fiber cavity.  
The modulated drive is amplified, and residual amplified spontaneous emission is filtered out 
with a 20-GHz fiber-Bragg grating band-pass filter.  1 W of average power is available before 
the input fiber coupler and after the filter.  Polarization controllers are used to control the 
polarization state separately before the intensity modulator and before the fiber cavity. The 
controller before the modulator is varied to optimize the peak power and modulation depth of 
the drive pulses and the controller before the cavity is aligned such that a single polarization 
mode is excited in the cavity, which is verified by minimizing the power corresponding to the 
resonance of the unwanted polarization cavity mode when sweeping the drive frequency 
through the cavity resonance frequencies as in the swept measurements from Fig. 3(d).   The 
drive frequency is locked to the cavity resonance with a proportional–integral–derivative (PID)  
control circuit using the 100-mW continuous-wave optical power (derived from the cavity 
output after a bandpass filter) detected and low-pass filtered as an error signal. The PID circuit 
enables control of the frequency offset, or detuning, from the cavity resonance. Stable chirped 
solitons are obtained using a side-lock technique at detuning values near 1 radian blue-detuned 
from the resonance, in agreement with numerical results (Fig. 1d). While the side-lock 
technique is effective for demonstrating stable chirped pulses, a Pound-Drever-Hall peak-lock 
technique may allow for exploration of more detuning values. To measure the cavity resonance, 
the continuous-wave output power is measured as the laser frequency is swept through the 
cavity resonance.  The laser frequency is periodically swept through the cavity resonance by a 
piezo-based tuning mechanism driven with a triangle-wave voltage source.

3. Numerical convergence criteria and stability

Numerical convergence criteria are developed to identify novel stable solutions under 
steady-state conditions. The optical intensity is analyzed to distinguish between trivial 
continuous-wave solutions, noise states, and the nontrivial solutions of interest.  The number 
of round trips needed for convergence varies from less than 300 to greater than 8000.  The 
cavity is numerically simulated for 2000 round trips, which is enough to reliably distinguish 
between modes of operation without excessive computation time.  The numerical results are 
identified as continuous-wave solutions first if the difference between the minimum and 
maximum intensity of the waveform is <0.1 W during the last simulated round trips.  
Distinguishing between noisy and nontrivial converged solutions is more involved.  For this 
analysis we examine the maximum value of the intensity during the last 100 round trips 
simulated.  Two types of convergence are found: convergence to a constant maximum intensity 
value and convergence to an intensity value that varies over a constant integer (>1) number of 
round trips. The constant convergence case can be identified by solutions with minimal 
variation of the maximum intensity over the last 100 round trips and the periodically converging 
solutions are identified through a Fourier analysis of the intensity over the last 100 round trips.  
After the solutions are analyzed for convergence, the continuous-wave solutions and noisy non-



converged solutions are identified by white space, and the converged solutions are identified 
by a color associated with a pulse parameter of interest (e.g. number of peaks in Fig. 1(b) and 
other metrics in Supplementary Document, Section 5).  For a given set of system parameters, 
multiple solutions are possible, which can result in multiple types of convergence. Therefore, 
the type of convergence is a function of the simulated initial conditions.

Fig. S1. Convergence and stability of chirped pulses. The difference in the (a) total energy, (b) 
root-mean-squared pulse width, and (c) temporal phase integrated over the central 2 ps of the 
pulse of the simulated electric field between subsequent round trips.

Chirped pulse solitons rapidly converge to their steady state in the cavity after a few 
hundred round trips.  The convergence of the difference in energy after subsequent round trips, 
as shown in Fig. 2(a) of the manuscript, is a simple and reliable indicator of stability for chirped 
solitons.  Here we show that in addition to pulse energy, the full complex electric field 
converges and is also stable for chirped dissipative Kerr resonator solitons.  With the same 
steady-state cavity parameters as in Fig. 2, and a unique initial condition, stable chirped pulses 
are obtained, and the convergence is evaluated in Fig. S1.  The energy difference converges to 
a numerical limit after around 500 roundtrips (Fig. S1(a)).  In addition, the RMS temporal pulse 
duration converges to a numerically limited value after around 600 roundtrips (Fig. S1(b)). 
Finally, the temporal phase convergence is evaluated using the difference integral in temporal 
phase over 2 ps centered at the peak of the ~8-ps pulse between subsequent cavity round trips.  
Changes in the temporal phase also rapidly converge to a numerically limited value after around 
600 round trips.  The convergence of the full complex electric field indicates that chirped 
dissipative solitons are strictly stable in numerical simulations.   

4. Numerical dependence on initial conditions

The steady-state solutions of the driven-cavity system are strongly sensitive to the initial 
waveform used to seed the numerical simulations.  Moreover, it is challenging to find the 
appropriate initial conditions for obtaining non-trivial steady-state solutions.  Even when a 
stable non-trivial solution exists with a particular set of system parameters, many initial 
waveforms result in the trivial continuous-wave solution, which is often also stable.  For 
example, Fig. S2(b) represents all the converged non-trivial solutions obtained from a single 
Gaussian initial waveform with a width of 3 ps and 10-W peak power.  The colored region is 
much sparser because many of the parameters where non-trivial solutions were previously 
identified (Fig. S2(a)) now converge to the trivial continuous-wave solution instead.  In this 
case the chirped pulses are not observed at all.  If instead, a completely random white-noise 
initial condition is used (where each point in time corresponds to a power that varies from 0 W 
to a maximum power of 143 W), a different subset of nontrivial solutions is revealed (Fig. 
S2(c)), including several of the chirped pulses.  Notice that neither initial conditions result in 
all of the non-trivial solutions.  In these examples, the chirped pulses only appear with the noisy 
initial condition and the solutions near 2.5 rad only appear with the Gaussian initial condition.



Fig. S2. Numerical sensitivity to initial conditions. (a) Converged solutions from Fig. 1(b) 
including the results from 15 different initial fields, with 9 random profiles and 6 different 
Gaussian profiles. The minimum number of peaks among the converged solutions is plotted for 
each pair of drive power and detuning values. (b) Converged solutions given a single Gaussian 
initial filed with 10-W peak power and 3-ps pulse width. (c) Converged solutions given a single 
initial condition with random intensity variations. (d) Illustration of different converged 
solutions as a function of the duration and peak power of the input Gaussian field for the drive 
frequency and detuning indicated from (a).  White space represents continuous-wave or non-
converged solutions.

To evaluate the dependence on initial conditions in more detail, for a single set of system 
parameters, we examine the converged solutions for many different Gaussian initial fields 
parametrized by temporal width and peak power (Fig. S2(d)).  We find a complex arrangement 
of solutions as a function of these initial conditions. In Fig. S2(d), the white regions indicate 
the continuous-wave solution and the color represents the number of nontrivial pulses in the 
converged waveform.  There is considerable variation in the character of the converged 
solutions for small changes in the initial condition.  Therefore, to maximize the probability of 
obtaining nontrivial solutions, for each choice of system parameters we examine many initial 
conditions and retain only the nontrivial solutions.  Specifically, we find a good optimization 
of solutions obtained vs. computation time with 15 initial conditions, including 9 random initial 
fields (where the power varies from 0 to 143 W) and 6 Gaussian initial fields (with 10-W peak 
power and a pulse width that varies in equally spaced increments from 500 fs to 3 ps).  This set 
of initial conditions was used to obtain the solutions illustrated in Fig. S2(a), for example.  
Owing to this sensitive dependence on initial conditions, it is likely that the results presented 
are incomplete and that with alternative initial conditions stable solutions could be obtained for 
additional parameters.



5. Evaluating and distinguishing stable numerical solutions

Fig. S3. Evaluating different parameters of the steady-state solutions. Converged solutions as a 
function of drive power and detuning for an all-normal dispersion cavity. The color maps 
represent (a) the number of prominent intensity peaks, (b) the intensity periodicity defined by 
the ratio of the central peak to the neighboring peak of the autocorrelation of the intensity profile 
(1 corresponds to a highly periodic pattern), (c) the difference between the maximum and 
minimum of the waveform power in the time domain, (d) the ratio of the peak power after 
external compression to that before, e the group delay dispersion required to maximize the ratio 
in (e), and (f) the root-mean-squared bandwidth of the output spectrum.

The results of the numerical simulations are illustrated as a function of two experimentally 
convenient variables, the drive power and the detuning.  In Fig. S3(a) (and Fig. 1 of the paper), 
the number of intensity peaks is indicated by a color for each converged solution as a function 
of drive power (y-axis) and detuning (x-axis).  In this case, the minimum number of peaks 
observed from among the converged solutions seeded by 15 different initial conditions (see the 
previous Section) is represented in the plot.  The number of intensity peaks is a useful solution 
parameter because it resolves different classes of solutions in parameter-space particularly well. 
However, other waveform parameters provide valuable and complementary information.  Here 
we examine multiple parameters of the complex stable solutions observed in normal dispersion 
driven cavities with spectral filtering.  The periodicity of the waveforms can be defined by the 
contrast ratio between the central intensity and neighboring points of a numerical 
autocorrelation of the waveform in time.  If this ratio is one, the solution is periodic and if this 
ratio is zero, the solution is aperiodic. In this case, the lowest ratio from among the converged 
solutions seeded by 15 different initial conditions is represented in Fig. S3(b). The periodicity 
highlights periodic Turing waves (red in Fig. S3(b)) as well as single pulses, such as the 
chirped-pulses (light-green region in Fig. S3(b)). While related, this information is distinct from 
the total number of prominent peaks (compare Fig. S3(a) and Fig. S3(b)).  Because the chirped-
pulse, dark soliton, and switching wave solutions each have a small number of peaks the 
contrast between these solutions and the Turing patterns is slightly larger for this parameter 
(e.g. dark blue regions of Fig. S3(a)).  The chirped-pulse peak power is large even before 
dechirping, which is evident when examining the difference between the waveform maximum 
and minimum powers (Fig. S3(c)).  To clearly distinguish the chirped pulses from other 
solutions we examine the ratio of the waveform peak power after dechirping to its peak power 



before dechirping and represent in Fig. S3(d) the maximum of this ratio from among the 
converged solutions obtained from all 15 initial conditions. The waveforms are dechirped by 
applying anomalous group-delay dispersion until the peak power is maximized.  The 
corresponding magnitude of this dispersion is also plotted in Fig. S3(e).  However, while this 
is useful information for a waveform with a dechirping factor >2, as it is for chirped pulses, it 
is less useful for waveforms that do not change in peak intensity with the application of 
dispersion, because this implies that the pulses do not have significant or well-defined 
quadradic spectral phase.  Finally, the spectral bandwidth (the maximum rms bandwidth from 
among all the converged solutions obtained from 15 initial conditions is plotted in Fig. S3(f)) 
is of interest for applications. Notably, the solutions with the largest spectral bandwidth include 
the chirped pulses (red) and the Turing patterns (orange).  Overall, the chirped pulses are 
characterized by few peaks, low periodicity, a high-power difference, large dechirping factor 
that corresponds to 1 ps2 of GDD, and broad bandwidth.  Chirped dissipative solitons can be 
distinguished through most of these parameters, as illustrated in Fig. S3. 

6. Coexisting nonlinear solutions

Driven fiber optical cavities are complex nonlinear systems that can support a variety of 
stable structures.  In cavities with anomalous dispersion, two commonly observed solutions are 
solitons and Turing patterns.  Notably, these distinct nonlinear solutions have also been found 
to coexist, with a single soliton stabilized on a stable Turing pattern [2].  This type of nonlinear 
coexistence is also found in several variations in the normal dispersion system with a spectral 
filter examined here.  In the normal dispersion system, Turing patterns are stable over large 
regions of parameter space (Fig. S4 red), with a particularly large region of stable solutions 
between 10 and 15 W of intra-cavity drive power.  The chirped pulses, as discussed previously, 
are stable over a large region between 5 and 15 W of drive power (Fig. S4 blue line). Noticeably, 
these two regions overlap between 10 and 15 W.  In the overlapping region the two nonlinear 
solutions coexist, and the chirped pulses exist on top of a periodic background. The chirped 
pulses therefore exhibit a continuous-wave background for drive powers smaller than 10 W and 
an oscillating background for greater powers (Fig. S4).  In addition to the Turing and chirped-
pulse coexistence we also find coexistence between many other combinations of the observed 
stable nonlinear waveforms.  One immediate consequence of this complicated coexistence 
behavior is the resultant difficulty in interpreting the solution parameters introduced in 
Supplementary Section 3. 

 

Fig. S4. Coexistence of nonlinear solutions.  The chirped pulses (blue region in the plot on the 
left and bottom row on the right) and the Turing patterns (red regions in the plot on the left and 



middle row on the right) coexist in parameter space resulting in a nonlinear solution combining 
the two solutions (top row on the right).   The corresponding temporal intensity and the spectral 
intensity in linear and log scales are represented on the right with the dechirped pulse plotted 
with a blue line and the 4-nm spectral filter plotted with a red dashed line.

7. Dependence on the filter bandwidth

 

Fig. S5. Chirped dissipative soliton existence vs. spectral filter bandwidth.  The dechirping 
factor for converged solutions vs. intra-cavity drive power and detuning for different 
bandwidths, Δλ (full width at half the maximum), of a Gaussian spectral filter for a cavity length 
of 52.5 m. Stable chirped pulses appear for filter bandwidths less than 8 nm. Higher 
compression factors are observed with broader filter bandwidths (red).

The filter bandwidth must be chosen appropriately to stabilize chirped pulses in the cavity.  
To evaluate the dependence of the regions of existence on the spectral filter bandwidth, 
numerical simulations are performed with the same parameters as the all-normal dispersion 
cavity (52.5 m length, Gaussian filter), but with varying filter bandwidths.  Changes to the 
stable chirped pulses over a range of drive powers and detuning values can be identified with 
the dechirping factor (Fig. S5). Chirped pulses are not observed without a spectral filter in the 
cavity.  Chirped pulses begin to appear for Gaussian filters with full-width at half maximum 
bandwidths of 8 nm or narrower. Full width at half maximum bandwidths between 6 and 4 nm 
enable chirped pulses with high dechirping factors over a broad range of detuning values.  This 
range therefore defines the optimum filter bandwidths for this cavity. The threshold for chirped 
pulses is approximately 5 W with a 6-nm filter bandwidth. With smaller drive powers, 
switching waves are observed instead. The threshold decreases with narrower spectral filter 
bandwidths. For example, the threshold is 2.5 W with a 2-nm filter, where the switching waves 
obtained with the broader filter become chirped pulses. Narrower filter bandwidths reduce the 
threshold further but with a corresponding decrease in the bandwidth and the chirped-pulse 
compression ratio.  From Eq.  1, the stability regions obtained for a given filter (e.g. 6 nm) can 
be recovered with a different filter bandwidth (e.g. 8 nm) by making a corresponding change 
in the total group delay dispersion (e.g. with (6/8)2 times less dispersion).  



8. Chirped cavity soliton dynamics
The dynamics of the chirped dissipative solitons depend on the parameters of the cavity.  

Fig. 2 of the paper depicts the evolution of chirped solitons from an all-normal dispersion cavity 
with a 2-nm Gaussian spectral filter, an intra-cavity drive power of 11.4 W, and a detuning of 
1.36 rad.  This configuration yields one of the least complex evolution dynamics among the 
chirped-pulses solutions observed. In this section, we describe examples of more complex 
dynamics observed for chirped-pulse solutions with different parameters.  While the essential 
characteristics are the same including the consistently large positive chirp and broad spectral 
bandwidth, the details of the evolution such as the pulse compression factor and the solution 
periodicity, can vary. 

 
Fig. S6. Characteristics of chirped dissipative solitons with a broader, 4-nm filter. (a) Numerical 
convergence of the pulse energy difference between subsequent round trips, ΔE, to a stable 
numerically-limited steady-state value. The pulse energy of the last 15 round trips is plotted 
inset to depict the period-2 oscillation. (b) The change in the pulse and peak intensity as a 
function of group-delay dispersion applied after the cavity, indicating compression with 
anomalous dispersion with a maximum at GDD = -0.9 ps2. (c) The chirped cavity output (black) 
and dechirped (blue) pulses from (b). (d) Evolution of steady-state chirped dissipative soliton 
bandwidth (FWHM), temporal width (FWHM), chirp (defined by the GDD required to 
maximize the pulse intensity, with the opposite sign), and pulse intensity in the cavity. The 
FWHM of the pulse after dechirping the pulse at each position of the cavity is plotted in blue. 
The associated pulse intensity, instantaneous frequency, power spectrum, and group delay from 
the indicated locations in the cavity are plotted on the right.  



Broader filter bandwidth.  The filter bandwidth is a critical parameter in determining the 
character of the solutions.  For comparison with the results of a 2-nm spectral filter (Fig. 2), we 
examine a solution with a 4-nm spectral filter (Fig. S6).  This solution exists with 9.6-W intra-
cavity drive power and 0.62-rad detuning. An interesting difference with this solution can be 
seen in the convergence (Fig. S6(a)).  The solution converges to a periodic solution alternating 
between slightly different peak powers (<1% variation) every other round trip.  While 
qualitatively distinct, this small change has a negligible effect on the pulse dynamics.  
Interestingly, for this filter bandwidth only solutions with this 2-period convergence are 
observed (after 2000 round trips). The chirp is similar to the previous case which corresponds 
to a GDD of approximately 0.9 ps2 with a dechirping factor of ~6 (Fig. S6(b)-(c)).  The broader 
bandwidth associated with the broader filter results in a shorter compressed pulse with a 
duration of 600 fs. The qualitative evolution of the spectrum is the same, with a bandwidth 
increase in the waveguide due to nonlinear broadening and a decrease from the spectral filter 
(Fig. S6(d)). The temporal pulse duration evolution is also qualitatively similar with an overall 
increase due to dispersion but with a steeper drop of the pulse duration in the first fiber section. 
Overall the chirped pulses observed with different filter bandwidths are qualitatively similar 
but with small quantitative differences.  In this case the broader filter bandwidth supports a 
chirped dissipative soliton with a broader bandwidth. 

Fig. S7. Characteristics of chirped dissipative solitons from Region i in the net-normal 
dispersion cavity. (a) Numerical convergence of the pulse energy difference between 
subsequent round trips, ΔE, to a stable numerically-limited steady-state value. (b) The change 
in the pulse and peak intensity as a function of group-delay dispersion applied after the cavity, 
indicating compression with anomalous dispersion with a maximum at GDD = -1.7 ps2. (c) The 
chirped cavity output (black) and dechirped (blue) pulses from (b). (d) Evolution of steady-



state chirped dissipative soliton bandwidth (FWHM), temporal width (FWHM), chirp (defined 
by the GDD required to maximize the pulse intensity, with the opposite sign), and pulse 
intensity in the cavity. The FWHM of the pulse after dechirping the pulse at each position of 
the cavity is plotted in blue. The associated pulse intensity, instantaneous frequency, power 
spectrum, and group delay from the indicated locations in the cavity are plotted on the right.  

Chirped pulses in a net-normal dispersion cavity. As described in the paper, a longer 
cavity is beneficial for reducing the drive power threshold and increasing the peak power of the 
pulsed drive source.  A 150-m cavity was designed with a net-normal dispersion equivalent to 
that of the shorter 52.5-m cavity.  This was achieved through introducing anomalous dispersion 
fiber   Additionally, motivated by the experimental parameters the filter is implemented as a 
12th order super-Gaussian spectral filter with a FWHM bandwidth of 4.25 nm and the round-
trip loss is 1.05 dB.  The solutions from this cavity are represented in Fig. 1(d) for comparison 
with the all-normal dispersion case (Fig. 1(b)) in the main paper.  The additional fiber sections 
may also impact the evolution of the chirped pulses in the cavity.  We examine these differences 
for the chirped pulses from Regions i and ii from Fig. 1(d).

Region i. Fig. S7 depicts pulses with an intra-cavity drive power of 2.95 W and a detuning 
of 0.9 rad in chirped-pulse Region i. This solution requires 8000 round trips to reach 
numerically-limited convergence (Fig. S7(a)) and the dechirping factor remains similar, with a 
value of ~6 (Fig. S7(b)-(c)).  The spectral bandwidth increases in both of the waveguide 
sections through nonlinear broadening and then decreases with the application of the filter.  The 
pulse duration now decreases in the anomalous dispersion fiber as the pulse is partially 
dechirped (Fig. S7(d)). The residual pulse broadening is compensated by a reduction through 
spectral filtering.  The chirp is larger than in the all-normal dispersion cavity, and corresponds 
to a GDD of 1.7 ps2 on the pulse output before the spectral filter.  This is in part because of the 
additional normal dispersion fiber that is required to form the additional dispersion map. The 
pulse (with two peaks) and the spectrum look qualitatively similar to those in the all-normal 
dispersion case. Overall, this solution is very similar to that from the all-normal dispersion 
cavity with small changes originating from the additional segments of fiber. 

Region ii. Fig. S8 depicts pulses with an intra-cavity drive power of 3.8 W and a detuning 
of 0.43 rad in chirped-pulse Region ii.  In this case the solution requires two round trips before 
the evolution repeats. Unlike in Fig. S6 where the pulse varies by <1% between round trips, in 
this case the variation is >10% (Fig. S8(a)). In Fig. S8(b)-(c) and Fig. 3 of the paper, the average 
of the dechirped pulse from each round trip is plotted. The averaged dechirping factor is slightly 
smaller than with a peak power increase of ~4 after dechirping. The large variation of peak 
power every round trip requires evaluating the pulse evolution over two subsequent round trips 
in Fig. S8(d).  While subtle differences can be identified, the overall evolution remains 
qualitatively the same: the spectral bandwidth and pulse duration have a net increase in the fiber 
sections and are both decreased back to their initial values after spectral filtering.  The chirp 
from pulses in Region ii is large throughout the evolution, with an output chirp of 1.4 ps2. 
Experimentally, the average between the output waveforms from each of the two round trips is 
measured. While the simulated chirped-pulse solutions are all qualitatively similar, the 
solutions from Region ii have the closest quantitative agreement with the chirped pulses 
observed experimentally.



Fig. S8.  Characteristics of chirped dissipative solitons from Region ii in the net-normal 
dispersion cavity. (a) Numerical convergence of the pulse energy difference between 
subsequent round trips, ΔE, to a stable numerically-limited steady-state value. The pulse energy 
of the last 15 round trips is plotted inset to depict the period-2 oscillation. (b) The change in the 
pulse and peak intensity as a function of group-delay dispersion applied after the cavity, 
indicating compression with anomalous dispersion with a maximum at GDD = -1.4 ps2. (c) The 
chirped cavity output (black) and dechirped (blue) pulses from (b). (d) Evolution of steady-
state chirped dissipative soliton bandwidth (full width at half the maximum, FWHM), temporal 
width (FWHM), chirp (defined by the GDD required to maximize the pulse intensity, with the 
opposite sign), and pulse intensity in the two last round trips of the cavity. The FWHM of the 
pulse after dechirping the pulse at each position of the cavity is plotted in blue. The associated 
pulse intensity, instantaneous frequency, power spectrum, and group delay from the indicated 
locations in the cavity are plotted on the right.

9. Relative contributions of physical effects

It can be challenging to develop an intuitive or physical explanation for the solutions to 
complex nonlinear solutions such as the chirped solitons presented. However, a couple of 
distinctions in the balance of pulse forming mechanisms can be emphasized between the 
chirped and traditional solitons.   The phase and amplitude balance of nonlinearity, dispersion, 
and the filter in the time and frequency domains is described qualitatively in Fig. S9.   For the 
traditional soliton in the anomalous dispersion regime in both the time and frequency domains 



the nonlinearity and dispersion produce pure phase modulations, which exactly balance.  
However, for the chirped soliton in the normal dispersion regime, the amplitude of the pulse 
and spectrum is also affected, resulting in a more complex and intricate balance.   The phase 
modulation from normal dispersion applied to a chirped pulse cancels out with the phase 
modulation from nonlinearity in both the time and frequency domains.  The amplitude balance 
in both domains can be understood as follows: the pulse gets longer in time in the fiber section 
due to dispersion, and the spectrum grows in bandwidth in the fiber section due to nonlinearity.  
The spectral filter directly reduces this bandwidth growth for balance in the spectral domain.  
Finally, because the pulse is chirped, a reduction in bandwidth also corresponds to a reduction 
in pulse duration because the lowest and highest frequencies are in the wings of the pulse.  This 
reduction in duration compensates for the increase from the dispersion in the fiber, resulting in 
a complete balance of all of the major effects.  From this picture it is clear that without the filter 
the changes in amplitude in the time and frequency domain could not be counter-acted and no 
bright pulse solution is possible.   Beyond this, the drive power has some influence on these 
dynamics which will modify this picture slightly.  A comprehensive study of this intricate 
dissipative balance may be valuable for future study.

Fig. S9. Relative contributions of the time dependent pulse shaping mechanisms for the 
traditional and chirped Kerr solitons in amplitude and phase. 

10. Dissipation per round trip

Chirped dissipative solitons are stable despite experiencing large levels of dissipation upon 
traversing the cavity.  The dissipation in the cavity stems from the spectral filter in addition to 
several optical components that result in broadband loss.  The spectral filter provides a 
frequency selective loss that reduces the spectral intensity at either end of the spectrum. 
Broadband loss results from optical components including the couplers, the isolator, and 
additional fiber loss.  These losses are accounted for in numerical simulations as a lumped 
dissipative element at the end of each round trip. The overall effect of the dissipative elements 
can be visualized in the spectral domain (Fig. S10). The corresponding numerical value for the 



dissipation is determined by calculating the pulse energy as the product of the peak pulse 
intensity with the full-width at half maximum duration of the pulse. 

 

Fig. S10. Spectra of chirped dissipative solitons depicting the effects of dissipation from the 
spectral filter in addition to other broadband sources of dissipation.  (a) Chirped dissipative 
soliton from Fig. 2 for the main paper, in a cavity with a 2-nm Gaussian filter. This solution 
features a total dissipation per round trip of 69.5%. (b) In the same cavity, a solution is stable 
despite a total loss per round trip of 92.1%. (c) The solution corresponding to the results in Fig. 
3 in the main paper (and Fig. S8) with a 4.25 super-Gaussian spectral filter.  In this case the 
total dissipation per round trip is 35.8%.

We examine three specific cases to illustrate the stability of chirped dissipative solitons for 
a variety of dissipation levels.   For a typical example, we examine the solutions highlighted in 
detail in Fig. 2 of the main paper (Fig. S10(a)). In this case a 2-nm Gaussian spectral filter 
noticeably reduces the magnitude of the spectral side lobes, and the additional frequency 
independent losses further reduce the spectral power.  The resulting total loss during one round 
trip for this solution is 69.5%. For the same cavity, solutions are stable with higher dissipation 
(Fig. S10(b)). In this case, the dissipation dynamics are complicated by the fact that the solution 
is periodic after two full round trips.  In one round trip, the spectrum experiences very large 
relative spectral filtering, resulting in a total loss of 92.1%. This incredible loss arises despite 
the same 2-nm spectral filter because in this case a large fraction of the energy is in the side 
lobes of the spectrum before filtering. A third case represents the numerical solution that most 
closely represents the experimental results presented in Fig. 3 of the main paper (Fig. S10(c)).  
Here the filter has a super-Gaussian profile with a broader 4.25-nm bandwidth, resulting in a 
total dissipation in one round trip of 35.8%.  Dissipation is essential for chirped dissipative 
soliton pulse formation since spectral filtering is required. This is in contrast with traditional 
solitons in anomalous dispersion cavities where stable solutions can form even with zero 
dissipation [3]. This new dissipative environment may enable opportunities for exploring new 
strongly dissipative behavior including soliton explosions [4] and dissipative soliton resonances 
[5]. 

11. Chirped-pulse scaling laws

Simple scaling laws relating solution parameters to the system parameters can be derived 
from a master equation model of the cavity.  The damped and detuned driven nonlinear 
Schrödinger equation, or the Lugiato-Lefever equation (LLE), is an established model for the 
driven nonlinear optical cavity without a filter. The spectral filter essential for chirped pulse 
generation is modeled with an additional term with a second derivative with respect to time, 
which corresponds to a Gaussian spectral filter.  The LLE with a spectral filter for a slowly 
varying electric field envelope A is given as
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where z is the propagation coordinate, t is the fast time, L is the length of the cavity, α 
corresponds to the cavity loss, δ is the round-trip detuning, 𝛽2  is the average group-velocity 
dispersion (GDD divided by L), γ is the Kerr nonlinear parameter, f is the spectral filter 
bandwidth, and D is the intra-cavity drive power.  Note that the loss is assumed to be 
independent of length, as in the experimental cavity in which loss primarily originates from 
local fiber components. By normalizing z, t, and A in the following way, 
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Eq. 1 can be rewritten as
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By equating the left-hand side to zero to account for steady-state conditions, Eq. 3 becomes 
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The resultant normalized equation, 
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is defined in terms of three unitless parameters corresponding to the normalized drive (Dn0), 
spectral filter (fn0), and detuning (δn0) coefficient, given by

𝐷𝑛0 = 𝐷𝛾𝐿
𝛼3,   𝑓𝑛0 = 𝑓 𝐿|𝛽2| ,   and   𝛿𝑛0 = 𝛿

𝛼 . (6) 

If chirped dissipative solitons are known to be stable in a cavity with specific values of Dn0, fn0 
and δn0, stable chirped solitons can be obtained for a different cavity if the values for the unitless 
coefficients do not change. The first relationship from Eq. 6 reveals that the required drive 
power has a cubic dependence on the total cavity loss and an inverse linear dependence on the 
total cavity nonlinearity (see Supplementary Document, Section 12).  The second relationship 
conveys that the filter bandwidth must scale inversely with the square root of the total group 
delay dispersion (see Supplementary Document, Section 7).  The third relationship suggests 
that the same solution can be recovered if the relative drive frequency scales linearly with the 
cavity loss.

The peak power, pulse duration, and energy also scale according to the system parameters, 
as defined by Eq. 2:  
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Eq. 7 reveals that broader bandwidths can be achieved with smaller dispersion and that large 
pulse energies are achieved with smaller nonlinearity and larger dispersion.  The scaling laws 
from Eq. 6 enable efficient design of cavities that can support experimentally realizable chirped 
dissipative solitons.  They can be readily applied to very different parameter regimes and 
platforms, including for micro-scale comb generation on-chip, or for macroscopic enhancement 
cavities. 

12. Dependence on the cavity length

 

Fig. S11. Chirped dissipative soliton existence vs. cavity length.  Illustration of the dechirping 
factor for converged solutions vs intra-cavity drive power and detuning for different cavity 
lengths, L, with a constant 4-nm spectral filter.  Increasing the cavity length has a similar effect 
to increasing the spectral filter bandwidth: stable chirped pulses become sparser in parameter-
space. 

The length of the cavity determines the total nonlinearity and the group-delay dispersion.  
From Eq. 6, changes to the total nonlinearity change the drive power threshold and changes to 
the group-delay dispersion change the required filter bandwidth.  To examine and verify these 
effects, we examine the dependence of the regions of existence on the cavity length with 
numerical simulations, with all other parameters held constant (Fig. S11).  The upper intra-
cavity drive power limit varies from 15 W to 10 W for a cavity that is 50% longer, in agreement 
with the predicated linear relationship. As the length of the cavity is increased further, the 
number of parameter values where chirped pulse solutions exist decreases dramatically.  This 
can be understood from the relation between the filter bandwidth and the cavity length in Eq. 
6. From Fig. S5 and Supplementary Document Section 7, we found that chirped pulses are not 
observed when the filter is too large.  In other words, when the normalized filter bandwidth, 
fn0, is too large, stable solutions do not exist.  From Eq. 6, increasing the cavity length also 
increases fn0 and so we would also not expect to find stable chirped pulse when the cavity is too 
long.  However, this relation also reveals that for long cavities, a value of fn0 that supports stable 
chirped solitons can be recovered with a spectral filter with a narrower bandwidth.  Simulations 
of the dependence of the solutions on length and on spectral filter bandwidth confirm the 
validity Eq. 6.



13. Driving the cavity with pulses  

Fig. S12. A pulsed drive source enables higher drive powers. (a) Output spectrum on a log scale 
of experimentally observed anomalous dispersion solitons, with the linear scale inset. (b) 
Minimum average power of the amplifier required for observing stable solitons vs. the duty 
cycle of the drive, illustrating a linear increase of the drive peak power.

High drive powers are required to observe stable chirped dissipative solitons.  The required 
high drive powers can be achieved by modulating the continuous wave drive into nanosecond 
pulses before amplification.  The effective drive power is then enhanced by the ratio of the 
drive pulse duration to the cavity period, which enable two orders of magnitude enhancement 
for the parameters used in this study.  To confirm that the drive power enhancement scales as 
expected, pulse pumping is applied to a cavity which produces traditional solitons in the 
anomalous dispersion regime (Fig. S12(a)).  The continuous-wave drive power threshold for a 
107-m long anomalous dispersion cavity is approximately 0.25 W of average power. By 
decreasing the duty cycle of the drive, the amplified peak power increases which should enable 
a corresponding decrease in the average power required by the amplifier.  The required average 
power requirement decreases as expected (Fig. S12(b)), which validates the pulsed drive 
approach experimentally.  

14. Simulation and measurements of the nonlinear cavity resonance  

The cavity resonance contains a large amount of global information about the complex 
nonlinear system.  In the paper, a single resonance from experiment is examined and compared 
to an equivalent numerical simulation, with good qualitative agreement.  The goal of this 
section is to provide more information about this complex resonance, including additional 
experimental data and corresponding numerical results.  Experimentally, the resonance is 
obtained from the time-integrated cavity output intensity as a function of the drive frequency 
when swept through the cavity resonance. The data from Fig. 3 corresponds to a drive amplifier 
power of 1.8 W (incident on the cavity, which corresponds to 68 W of peak drive power coupled 
into the cavity). Here we examine the resonance behavior for drive amplifier powers that vary 
from 100 mW to 2 W (Fig. S13).  At each power we adjust the polarization of the drive to align 
to a single polarization state of the cavity by minimizing additional resonances.  The output of 
the cavity is observed by detecting it on a photodiode after filtering out any spectral content 
outside of the central 20-GHz drive band with a fiber Bragg grating filter.  The peak of the 
experimental resonance is shifted to match the peak from the equivalent numerical sweep.  The 
numerical sweeps are obtained with noise-seeded simulations in which the detuning is varied 
after every round trip at a rate determined by the experimental sweep time.  



Fig. S13. Cavity resonance measurements and corresponding simulations.  (Top) Experimental 
(black) and simulated (blue) intra-cavity continuous wave power as a function of the drive 
frequency detuning and average power (a) from negative to positive and (b) from positive to 
negative detuning.  (Bottom) Color map representation of the same results.  The resonance 
contains global information about the complex nonlinear system.  Hysteresis is observed as a 
function of sweep direction.

Given the triangle wave used to drive the experimental frequency sweep, the resonance is 
swept from positive to negative detunings as well as from negative to positive detunings.  With 
increasing detunings (Fig. S13(a)), the resonance peaks become broader with higher drive 
power. They are also shifted to negative detuning values. With decreasing detunings (Fig. 
S13(b)), the resonance behaves differently and is no longer around zero detuning at low power. 
The resonance is also broader and exhibits more structure.  The qualitative agreement with 
experiment is in general good.  There are also features that do not agree due to the complexity 
of this system.  For example, there is some disagreement at higher drive powers in Fig. S13(a).  
Also, the step-like structures are inconsistent at around 1.1-W amplifier drive power in Fig. 
S13(b). There are several plausible explanations for these discrepancies related to 
environmental perturbations, polarization dynamics, pulse pumping dynamics, and the 
sensitive dependence on initial conditions.  Since the cavity resonances are not actively 
stabilized, environmental thermal and acoustic perturbations will distort the resonance 



observed.  Any coupling between orthogonal polarization states in the cavity will produce 
additional resonances within this sweep range.  In addition, dynamics resulting from the other 
polarization state can strongly affect the overall nonlinear dynamics and consequently the shape 
of the resonance.  The present simulation neglects the polarization dynamics and assumes a 
single polarization state.  Experimentally, the cavity is driven by a 10-ns drive pulse.  

In the numerical simulations a continuous-wave drive is assumed because the drive pulse 
is much longer than the simulated temporal window.  However, even a slight change in the 
drive magnitude as a function of time can lead to noticeable effects in the nonlinear dynamics 
of the system which would translate to changes in the resonance features.  Finally, as 
emphasized in Supplementary Document Sections 4 and 6, the numerical simulations are 
complicated and feature multiple stable states, small basins of attraction, and a sensitive 
dependence on initial conditions.  These complexities are all expected to be encountered when 
continuously traversing all of the different values of detuning.   Many different classes of 
solutions, including dark solitons, switching waves, Turing patterns and chirped pulses can 
exist simultaneously within the same parameter space.  In addition, each of these solutions can 
be obtained with different initial conditions, whereas in the simulation of the sweep, only one 
initial condition is chosen.  We apply random intensity waveforms for the starting initial 
condition and by varying the detuning seed the next solution with the waveform that is obtained 
from the previous detuning.  However, in practice, any small perturbations in the system will 
lead to different nonlinear pathways.  In other words, sweeping over the parameters of a system 
sensitive to initial conditions further enhances this sensitivity, which complicates the analysis.  
Overall, it is remarkable to obtain qualitative agreement for resonances obtained from this 
highly nonlinear and complex system.  Closer agreement may be obtained with a more 
complicated model that addresses the challenges summarized here.

15. Analysis of the intensity autocorrelations

For a collinear two-photon intensity autocorrelation the ratio of the detected signal peak to 
the background is dependent on the pulses as well as the residual continuous-wave background.   
Without the continuous-wave background, this peak-to-background autocorrelation ratio is 3 
to 1 (this is the case for the pulses output from mode-locked lasers, for example).  However, as 
the continuous-wave background increases, this ratio reduces.  We illustrate this effect 
numerically with a Gaussian pulse on a continuous-wave background with a variable ratio of 
the relative amplitude of these two contributions (Fig. S14). We find that the autocorrelation 
contrast noticeably decreases when the amplitude of background to pulse peak approaches 0.5. 
In contrast, the ratio increases if there are more pulses in the cavity because the ratio of pulses 
to total background increases.  It also increases when the chirped pulses compress because the 
pulse peak power increases. The autocorrelation background therefore conveys useful 
information about the chirp and pulse compression.  In addition to the pulse duration (Fig. 3(f)) 
the autocorrelation background is also minimized when the pulse is dechirped (Fig. S14(d)).  
For comparison with numerical simulations, several assumptions are needed.  The numerical 
temporal window is sampled over 100 ps to minimize computation time.  Therefore, the 
background is extrapolated up to the full 10-ns duration of the drive pulse.  After leaving the 
cavity, the background is filtered with a fiber-Bragg grating and then amplified with an Erbium-
doped fiber amplifier before autocorrelation measurements.  We find agreement with the 
experimental results with a net 15-dB attenuation of the background after these elements (Fig. 



S14(e)).  In summary, the autocorrelation ratio contains additional information regarding the 
complex waveform output from driven resonators.

Fig. S14. Simulated autocorrelation of a pulse with a continuous background and comparison 
with experiment. (a) Pulse intensity profile, (b) autocorrelation profile and (c) autocorrelation 
ratio with the ratio of continuous-wave amplitude to the peak pulse amplitude of the waveform 
varying along the horizontal axis.  (d) Experimental and (e) simulated autocorrelation ratio of 
the chirped dissipative solitons as a function of the GDD from the grating pair compressor with 
a minimum corresponding to the fully dechirped pulse. 

16. Relationship between chirped dissipative solitons and other normal 
dispersion waveforms

In normal dispersion resonators, researchers have examined dark pulses [6-8] bright pulses 
[6], switching waves [9], platicons [10,11], and travelling front solutions [9].  Moreover, these 
solutions have been shown to be closely related to each other [9,10].  Here we explore the 
relationship between the chirped pulse solutions and previous solutions in the normal dispersion 
regime.  Optical fibers are a nearly ideal waveguide for studying pulse propagation and so non-
ideal effects, such as nonlocal coupling and higher-order group velocity dispersion are 
neglected.  We examine and reproduce a subset of the solutions from Ref. [12] based on the 
Lugiato Lefever equation (LLE), to facilitate the comparison between different solutions.  
Numerically simulated solutions of the LLE (without a filter) are plotted in parameter space 
with respect to the analytical solutions for the continuous-wave solutions.  The continuous-
wave solutions are given by
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where D0
+- is the normalized drive power coefficient and δ_n0 is the normalized detuning 

coefficient.   These expressions for the drive power are plotted as a function of detuning in 
green in Fig. S15.  For reference, the critical value of the equilibria of the electric field squared, 
β = D0(δn0) = 1+(1 - δn0)2, is plotted as a dashed line [12]. We additionally reproduce the dark 
pulse solutions from Ref. [12] over a well-defined line in the detuning vs. drive parameter 
space.  At low drive powers, dark solitons are observed.  At higher drive powers the solutions 
develop a more complex structure. At higher drive powers the solutions become unstable and 



the location of this boundary agrees well with the results in Ref. [12]. By introducing a spectral 
filter, even one with a broad 20-nm bandwidth, the location of the solutions within the 
parameter space shifts and the character of the solutions begin to change.  

Fig. S15. Relation in parameter space between solutions in normal dispersion cavities. (a) Dark 
solitons in a normal-dispersion cavity without a spectral filter just above the analytically 
calculated lower branch D0

- in excellent agreement with Ref. [12]. For drive powers > 0.1 W, 
solitons become unstable and do not converge. (b) With a 20-nm Gaussian spectral filter, dark 
solitons are found at low drive powers and complex dark solitons at higher drive powers. For 
powers >0.5 W, dark solitons appear as switching-waves. Switching waves evolve to chirped 
pulses featuring a decreasing peak duration and an increasing spectral bandwidth with narrower 
spectral filtering (light blue).  Solid lines represent phenomenological fits to guide the reader. 
*These solutions have been referred to as switching waves, interlocking front solutions, or long 
complex dark pulses.  Discontinuities in the instantaneous frequency δω when the amplitude 
(intensity) approaches zero and the phase is not well defined are omitted.   

The more complex dark solitons become stable and can exist with ten times higher drive 
powers (Fig. S15(b)).  Moreover, the distinction between dark solitons, platicons, and switching 
waves begins to become less clear.  In comparison to chirped solitons, these solutions do not 
have a quadratic spectral phase (or chirp) and their 3-dB bandwidth is narrow.  If the bandwidth 
of the spectral filter is narrow enough (e.g. 4-6 nm as described in Supplementary Document, 
Section 7) and the drive power is sufficient, the bandwidth increases, the pulse duration 
decreases, and pulses with a well-defined chirp can form (Fig. S15(b)).  Given the close relation 
in parameter space and the continuous evolution from dark solitons to chirped pulses, it is clear 
that the chirped pulses are related to the other solutions in normal dispersion resonators. Pulse 
formation in the normal dispersion cavities has been described as the result of interlocking 
switching-waves or front solutions [9].  Interestingly, the chirped pulse solutions in mode-
locked lasers can also be described as the interlocking of traveling front solutions.  Chirped-
pulse mode-locked lasers are well described by the cubic quintic Ginzburg Landau equation 
which is known to possess chirped pulse solitons described in this way [13].  While this 



relationship is suggestive, a thorough theoretical analysis will be needed to fully describe 
chirped dissipative solitons in passive cavities.  Moreover, the complete set of solutions and 
dynamics for normal dispersion resonators with a filter is highly nontrivial (e.g. see Fig. 1 and 
Fig. S3).  For example, in addition to the branch of solutions examined in Fig. 2, dark solitons, 
switching waves, and other solutions are also stable in completely different parameter regimes 
(Fig. 1 and Fig. S3).  A comprehensive theoretical investigation for all of these nontrivial 
solutions will be important for future devices based on this novel filtered resonator design.

17. Comparison of chirped solitons to solitons in anomalous-dispersion 
cavities

Fig. S16. Chirped dissipative soliton energy and peak power in comparison to traditional 
solitons. Stable soliton solution from numerical simulations of an (a) all-anomalous dispersion 
cavity without a filter and an (b) all-normal dispersion cavity with a 1-nm filter.  The chirped-
pulse soliton has around seven times higher pulse energy than the traditional soliton with the 
same drive power and magnitude of dispersion. (c) At higher drive powers, chirped dissipative 
solitons can support another two times higher energy than the traditional soliton. (d) High peak 
powers can be achieved after dechirping chirped dissipative solitons obtained with a spectral 
filter with a larger 6-nm bandwidth. 

In mode-locked lasers, chirped solitons stabilize high pulse energies.  In general, when the 
pulse is chirped, its peak power remains low, which reduces the destabilizing effects of 
nonlinearity.  In normal dispersion resonators, chirped pulse mode-locked lasers have enabled 
pulse energies that are as much as two orders of magnitude larger than what can be achieved 
with traditional solitons [14-16].  Numerical simulations can help determine the relative energy 
of chirped-pulse solitons in passive resonators.   We begin with the chirped-soliton resonator 
parameters for a 52.5-m normal dispersion fiber and a 4-nm bandwidth spectral filter.  To 
examine comparable traditional solitons, we change the sign of the dispersion and remove the 
spectral filter.  We find stable solitons over a well-defined region of drive powers and detuning 
values.  As the drive power increases, the continuous-wave-background, and consequently the 



solitons, begin to destabilize.  We select the soliton that is noise-free and stable with the largest 
drive power as the high-performance representative for traditional solitons. The energy of the 
resultant pulse corresponds to 15 pJ inside the resonator with an intra-cavity drive power of 0.3 
W and a detuning of -1.34 radians (Fig. S16(a)).  In the normal dispersion cavity, chirped pulses 
exist over a wide range of drive powers and detuning values.  However, the chirped pulses have 
a drive power threshold below which chirped pulses are not stable.  For the 4-nm filter, chirped 
pulses are not stable at the 0.3-W drive power of the noise-free, stable traditional soliton.  
However, with a narrower 1-nm spectral filter, it is possible to stabilize chirped pulses with 
only 0.3-W of drive power.  The resultant chirped pulses have pulse energies of 100 pJ, or about 
seven times more energy than the solitons (Fig. S16(b)).  This result suggests that chirped pulses 
also carry a significant energy benefit in Kerr resonator systems.

In the previous result, the chirped-pulse drive power was constrained for direct comparison 
between the two types of solitons.  However, higher energies may be possible for the chirped 
pulses with higher drive powers.  To investigate, simulations are run for all possible drive 
detuning values as well as for much larger drive powers.  Stable solutions are found for powers 
as much as fifty times higher than for the comparable anomalous dispersion cavity.  The 
chirped-pulse energy is found to increase with increasing drive power.  The bandwidth also 
increases with the drive power.  Clean, noise-free pulses with energies of at least 220 pJ are 
observed in this cavity (Fig. S16(c)).  This corresponds to more than ten times the energy of 
traditional solitons. However, the bandwidth of this chirped pulse is narrower than that of the 
soliton.  By increasing the spectral filter, the bandwidth can be increase.  For example, with a 
6-nm spectral filter, we observe stable chirped pulses with a peak power enhancement that is 
greater than ten compared to traditional solitons (Fig. S16(d)). Numerical simulations therefore 
strongly suggest that much higher pulse energies and peak powers are achievable with chirped 
solitons than with the traditional solitons.  Higher energy pulses for frequency combs 
corresponds to a higher power per comb line, which is an important performance parameter.  

References
1. Chembo, Y. K. and Menyuk, C. R. Spatiotemporal Lugiato-Lefever formalism for Kerr-comb generation in 

whispering-gallery-mode resonators. Phys. Rev. A 87, 053852 (2013).
2. Anderson, M., Wang, Y., Leo, F., Coen, S., Erkintalo, M. and Murdoch, S. G. Coexistence of multiple 

nonlinear states in a tristable passive kerr resonator. Phys. Rev. X 7, 1–14 (2017).
3. Renninger, W. H. and Rakich, P. T. Closed-form solutions and scaling laws for Kerr frequency combs. Sci. 

Rep. 6, 24742 (2016). 
4. Cundiff, S. T., Soto-Crespo, J. M. and Akhmediev, N. Experimental evidence for soliton explosions. Phys. Rev. 

Lett. 88, 739031–739034 (2002).
5. Chang, W., Ankiewicz, A., Soto-Crespo, J. M. and Akhmediev, N. Dissipative soliton resonances. Phys. Rev. A 

78, 23830 (2008).
6. Xue, X., Xuan, Y., Wang, P. H., Liu, Y., Leaird, D. E., Qi, M. and Weiner, A. M. Normal-dispersion 

microcombs enabled by controllable mode interactions. Laser Photonics Rev. 9, L23–L28 (2015).
7. Jang, J. K., Erkintalo, M., Schroder, J., Eggleton, B. J., Murdoch, S. G. and Coen, S. All-optical buffer based on 

temporal cavity solitons operating at 10 Gb/s. Opt. Lett. 41, 4526–4529 (2016).
8. Liang, W., Savchenkov, A. A., Ilchenko, V. S., Eliyahu, D., Seidel, D., Matsko, A. B. and Maleki, L. 

Generation of a coherent near-infrared Kerr frequency comb in a monolithic microresonator with normal GVD. 
39, 2920–2923 (2014).

9. Parra-Rivas, P., Gomila, D., Knobloch, E., Coen, S. and Gelens, L. Origin and stability of dark pulse Kerr 
combs in normal dispersion resonators. Opt. Lett. 41, 2402–2405 (2016).

10. Lobanov, V. E., Lihachev, G., Kippenberg, T. J. and Gorodetsky, M. L. Frequency combs and platicons in 
optical microresonators with normal GVD. Opt. Express 23, 7713–7721 (2015).

11. Fülöp, A., Mazur, M., Lorences-Riesgo, A., Eriksson, T. A., Wang, P.-H., Xuan, Y., Leaird, D. E., Qi, M., 
Andrekson, P. A., Weiner, A. M. and Torres-Company, V. Long-haul coherent communications using 
microresonator-based frequency combs. Opt. Express 25, 26678 (2017).



12. Godey, C., Balakireva, I. V., Coillet, A. and Chembo, Y. K. Stability analysis of the spatiotemporal Lugiato-
Lefever model for Kerr optical frequency combs in the anomalous and normal dispersion regimes. Phys. Rev. A 
89, 063814 (2014). 

13. Soto-Crespo, J. M., Akhmediev, N. N., Afanasjev, V. V and Wabnitz, S. Pulse solutions of the cubic-quintic 
complex Ginzburg-Landau equation in the case of normal dispersion. Phys. Rev. E 55, 4783–4796 (1997).

14. Renninger, W. H., Chong, A. and Wise, F. W. Pulse shaping and evolution in normal-dispersion mode-locked 
fiber lasers. IEEE J. Sel. Top. Quantum Electron. 18, (2012).

15. Renninger, W. H., Chong, A. and Wise, F. W. Giant-chirp oscillators for short-pulse fiber amplifiers. Opt. Lett. 
33, 3025–3027 (2008).

16. Chong, A., Renninger, W. H. and Wise, F. W. All-normal-dispersion femtosecond fiber laser with pulse energy 
above 20nJ. Opt. Lett. 32, 2408–2410 (2007).


