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1. Model-based calibration method (MCM) for DRC-MMP 
The MCM relies on establishing a system model for the DRC-MMP first. The calibration is 
then done by exploring the explicit relationship between the calibration parameters and the 
Fourier coefficients of the modulated light intensity [1], or fitting the measured quantities to 
their counterpart obtained from the system model [2-4]. To be more specific, Eq. (1) can be 
generally rewritten in terms of Fourier series as 
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where {I0, (𝛼2n, β2n) , n = 1, 2, ..., Nmax} are the Fourier coefficients of the modulated light 
intensity, and Nmax denotes the maximum Fourier components that is determined by the rotary 
speed ratio of the two compensators. For the common ratios of 5:1 and 5:3, Nmax = 12 and 16, 
respectively [1]. For brevity, we denote the Fourier coefficients of the modulated light intensity 
as a column vector Γ = [𝛼2n, β2n]T. The MCM based on the nonlinear regression can then be 
formulated as 
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x

x , (S2) 

where 
2⋅  represents L2-norm, x is the vector that consists of the calibration parameters, and 

Γmeas and Γcalc denote the Fourier coefficients that are directly obtained from the collected light 
intensity and those obtained according to the established system model, respectively. In the 
implementation of the MCM, the calibration samples can be air or SiO2/Si thin films. 

Note that to achieve accurate calibration the established system model in MCM should take 
into account of all the optical components that may change polarization states. For example, 
for DRC-MMP that contains not only polarizers and compensators, but also optical components 
that change polarization states, such as beam splitters and high numerical aperture objective 
lenses [4, 5], the implementation of MCM requires parameterizing all these components first 
and then solving Eq. (S2). 

 

2. The relationship between the eigenvalues of matrices Cfi (Cbi) and Mfi (Mbi) 
For the single-pass system, it is very clear that the eigenvalues of Cfi (Cbi) are equal to the 
eigenvalues of Mfi (Mbi), but in the double-pass system, the relationship between the 
eigenvalues are more complicated. According to Eq. (8), Mfi equals to Mbi in the double-pass 
system so they are uniformly denoted by Mi here, and Cfi is denoted by Ci. Figure 1(b) shows 
the double-pass setup of the dual rotating-compensator MMP. It's very easy to know the 
intensity projection matrix is given by 

 0i i i=D AM M M W . (S3) 

Since A is a column full-rank matrix, W is a row full-rank matrix, and the inverse of a non-
square matrix is regarded as its Moore-Penrose pseudo-inverse matrix, there is 
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where Mi represents the Mueller matrix of the calibration sample containing the azimuth angle, 
and it can also be represented by the rotation matrix R(θ) and the sample Mueller matrix without 
the azimuth angle ′iM  as 

 ( ) ( )i iθ θ′= −M R M R . (S5) 

The Mueller matrix of the mirror M0 can be expressed as 
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Substituting Eqs. (S5) -(S6) into Eq. (S4), Eq. (S4) can be expressed as 

 + ( ) ( )i i iθ θ′ ′= −C W R M M R W . (S7) 

Observing the characteristic equation of ′iM  and the characteristic equation of ′ ′⋅i iM M  shown 
in Eq. (S8), we can know that the eigenvalue of ′ ′⋅i iM M  is the square of the eigenvalues of 

′iM . 
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Therefore, the eigenvalues of the matrix Ci are the square of the eigenvalues of the Mueller 
matrix of the calibration sample. The Mueller matrix of the calibration sample can be solved 
by the eigenvalues of the Mueller matrix. In order to facilitate the solution, a polarizer or 
waveplate is usually selected as the calibration sample. 

As stated in the manuscript, matrix Ci has five eigenvalues, but the Mueller matrix of the 
calibration sample only has four eigenvalues. In order to accurately find the Mueller matrix of 
the calibration sample, the eigenvalues of matrix Ci must be studied. 

A 4×n-dimensional matrix can be written as a combination of n column vectors, so we 
express a general form of the modulation matrix as 
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where ξi and ηi are 4×1 column vectors. And there are at most four linearly independent four-
dimensional vectors that can form a set of basis vectors. Therefore, the following relationship 
holds: 
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Then the equation of 4 4 4 4
+

× × × ×=n n n nC W M W  can be expressed as 
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According to Eq. (S10), each row from the 5th-row to the nth-row of matrix C can be 
expressed as a linear combination of the first four rows of matrix C, that is, the value of any 
fifth-order sub-form determinant of C is 0. Therefore, the rank of matrix C is 4, which means 
that compared to the sample's Mueller matrix, the extra eigenvalues of matrix C must be 0. 

To sum up, what is different from traditional ECM is that in the single-pass system, the non-
zero eigenvalue of Ci is equal to the eigenvalue of Mi, while in the double-pass system, the 
non-zero eigenvalues of Ci is the square of the eigenvalues of Mi. 

 

3. Calibration of the double-pass system by ECM 
As shown in Fig. 1(b), the double-pass system adopts a BS to realize the purpose of sharing the 
optical path between the PSG and PSA. The ECM only needs to measure four calibration 
samples in sequence to complete the system calibration, with the polarization effect of the BS 
considered automatically. The calibration samples were placed on the calibration plane (CP1 
or CP2) between the mirror and the BS shown in Fig. 1(b). Here, the calibration samples are 
air, a polarizer with an azimuth angle of 0° (P0), a polarizer with an azimuth angle of about 90° 
(P90), and a one-eighth waveplate (Customized wave plate, Union Optic) with an azimuth angle 
of about 30° (C30). 

During the experiment, we roughly adjust the calibration samples to the azimuth angles 
mentioned above with respect to the plane of incidence according to the label associated with 
each calibration sample indicating its transmission axis or fast axis. It should be pointed out 
that here we only need to know the approximate orientation of these angles, because we will 
finally re-calculate their actual angles in the calibration by ECM. 

We first place sample P0 on the CP1 to complete the measurement. And then the response 
of sample P90 or C30 can be obtained respectively by replacing P0 with P90 or C30. After 
removing the above calibration samples, the null response of the system is obtained by 
measuring a reflection mirror. The light intensity projection process is then performed 
according to the Eqs. (1)-(3) and Eq. (14), and we can obtain the light intensity projection 
matrix of different calibration samples. After that, we find the eigenvalues of Mueller matrices 
of calibration samples by performing eigenvalue analysis according to Section 2 of the 
Supplement 1. Finally, the azimuth angles of the calibration samples are determined by 
minimizing λ20/λ19 of matrix in Eq. (13). And the zero eigenvectors of totK  and tot′K  can be 
rearranged to obtain the modulation matrix W and the analysis matrix A respectively. 

The calibration steps are summarized as follows: 
Step 1: Install the calibration samples, and roughly adjust the azimuth angle of each 

calibration sample. 
Step 2: Each calibration sample (air, P0, P90, C30) should be measured individually for 

calibration. 
Step 3: Perform the light intensity projection process according Eqs. (1)-(3) and (14). 
Step 4: Mueller matrices of calibration samples are solved by Eqs. (5)-(9). And azimuth 

angles of calibration samples are determined by Eqs. (10)-(13) as well as Section 2 of the 
Supplement 1. 

Step 5: Rearrange the zero eigenvectors of totK  and tot′K  in Eq. (13) to obtain the 
modulation matrix W and the analysis matrix A, respectively. 

 

4. Calibration of the double-pass system by MCM 
As shown in Fig. 1(b), the double-pass system adopts a BS to realize the purpose of sharing the 
optical path between the PSG and PSA. The multi-layer films in the BS will induce a shift 
between s- and p-polarizations in both transmission and reflection setups and thus change the 
polarization state, even though the BS is declared to be non-polarizing [4, 5]. We use Mt 

BS and 



Mr 
BS to denote Mueller matrices of the BS in transmission and reflection setups, respectively. 

The sample Mueller matrix MS in Eq. (1) for the double-pass system should be 

 t real r
s BS s BS= ⋅ ⋅M M M M , (S12) 

where Mreal 
s  is the Mueller matrix of the sample without the polarization effect of the BS. 

To achieve accurate calibration for the double-pass system by MCM, we should first 
parameterize the BS. Assuming that the multi-layer films in the BS is isotropic, the polarization 
effect of the BS can thereby be parameterized with four parameters: Ψbt, Ψbr, Δbt, and Δbr, where 
Ψbt and Δbt denote the amplitude ratio and phase retardance in transmission setup, respectively, 
and Ψbr and Δbr denote the amplitude ratio and phase retardance in reflection setup, respectively. 
Thus, Mt 

BS and Mr 
BS can be represented by 
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respectively. Taking into account of the calibration parameters associated with the polarizers 
and compensators as well as the four parameters of the BS and solving Eq. (S1), we can finally 
obtain the Mueller matrix of the mirror as follows 

 real
S

1.0000 0.0024 0.0023 0.0069
0.0024 0.9998 0.0008 0.0017
0.0015 0.0006 0.9947 0.0074

0.0060 0.0032 0.0070 0.9958
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According to the analysis results of mirror, the Mueller matrix element error of the mirror 
calculated by the MCM does not exceed 0.01 after compensating for the polarization effect of 
the BS. Therefore, we can conclude that the polarization effect of the non-polarizing BS is not 
negligible, but the system is too complex for the MCM to model it. In contrast, the ECM, as a 
model-free calibration method, is very suitable for this complex ellipsometry system. 
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