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SUPPLEMENTARY 1: NUMERICAL SIMULATION USING
K-WAVE MATLAB PLATFORM

For validation study of the experimental results, we carried
out numerical simulation studies where a linear transducer ar-
ray consisting of 16 sensor elements − similar to that of the
experimental studies − is adopted as acoustic sensor for bound-
ary detection of the PA-signals. We also carried out simulation
studies with linear array transducer consisting of 128 sensor
elements, which is very standard and commonly used in linear
array-based photoacoustic imaging (PAI) and ultrasound (US)
imaging).

For numerical simulation, we employed k-Wave MATLAB
toolbox which is commonly and widely used in PA-imaging
as a numerical simulation tool [1–3]. Eight circular targets of
radius ∼ 0.1mm were embedded in a homogeneous background
medium (of 60mm (in axial direction) and 20mm (in lateral direc-
tion)) along the vertical z-axis with a separation of 5mm between
two consecutive targets. For all of the targets, strength of the
initial PA pressure waves was tailored to be 5Pa against 0Pa (for
the background, as it is done in [4, 5]) while mass density, speed
of sound, and acoustic attenuation coefficient were tailored to be
similar as 1000kg/m3, 1500m/s, and 0.75dB/(MHz.cm) respec-
tively. The first target was placed at a distance of 18mm away
from the transducer surface which is a linear-array sensor con-
sisting of 16 elements with an inter-element spacing ∼ 1.2mm,
central frequency ∼ 7.5MHz, and bandwidth ∼ 60%. From
this array of boundary measured time-resolved PA-signals, we
reconstructed the spatial distribution of PA-signal strength and
thus, generate the reconstructed images. The entire 16 sensor
elements are grouped into 4 sub-arrays with 4 sensor elements
(given by L = 16

4 ) in each sub-arrays (as it is done in the experi-
mental studies). The detected signals were sampled with sam-
pling frequency ∼ 50MHz. Envelope detection (using Hilbert
transform) followed by log compression were performed in the
beamformed signals and then, normalized before displaying the
reconstructed images. The simulation results are presented in
Fig. 1-2 and Table 1 in the main text.

In most of the commercially available US and PA imaging sys-
tems (including Verasonic Inc., USA and Cyberdine Inc., Japan),
128 element transducers are commonly used to collect the bound-
ary data. Moreover, there are several reported articles where
studies were performed using linear array transducer of 128 sen-
sor elements. To follow and compare with this standard linear
transducer-based imaging system, we carried out simulation
studies with linear transducer array of 128 elements where we
replaced the linear transducer of 16 elements by that of 128 ele-
ments in the above mentioned numerical simulation procedure
(for the case of 16 elements). In the case of linear transducer
with 128 elements, the entire 128 sensor elements are grouped
into 4 sub-arrays with 32 sensor elements (given by L = 128

4 ) in
each sub-arrays. The reconstructed PA-images − corresponding
to linear US transducer consisting of 128 sensor elements − are
presented in Fig. S1. From the results (shown in Fig. S1), it is
clearly observable that our proposed algorithm outperforms the
existing reconstruction algorithms (namely, MV and MV + CF).

Fig. S1: Reconstructed PA-images of a numerical phantom with
eight point targets − being embedded (along a vertical axis) in
background − using various beamformers: MV (a), MV + CF

(b), and MV + DASDSF (c).Variation of PA-signal strength
along the lateral direction across the targets at the depths
∼ 23mm (d) and ∼ 33mm (e). We employed linear array

transducer of 128 sensor elements (against 16 elements as it is
shown in Fig. 1-2).

SUPPLEMENTRY 2: NUMERICAL SIMULATION STUD-
IES FOR VALIDATION OF SIGNAL CROSS-TALKS FROM
CLOSELY SPACED TARGETS

To validate the image reconstruction performance of the pro-
posed algorithm under high influence of side-lobes and/or cross-
talks of PA-signals from closely spaced targets, we considered a
numerical sample or phantom embedded with closely spaced
five (5) individual circular targets (radius ∼ 0.1mm) being ar-
ranged in a row (in lateral direction) at the depth of ∼ 25mm
from the transducer surface. Each targets is physically sepa-
rated from one another by ∼ 1.2mm. Fig. S2(a)-(c) present the
reconstructed images of the numerical phantom (consisting of
five targets) obtained by using the existing algorithms (MV and
MV +CF) and our proposed algorithm (MV +DASDSF). From
the reconstructed images, we observed that, in the reconstructed
image obtained by using MV, the individual targets are not
only highly overlapped but also corrupted by side lobes at a
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greater extent. When MV is combined with coherence factor
(CF), side-lobes are significantly reduced and targets are de-
tectable but feebly. In the reconstructed image obtained by our
proposed (MV + DASDSF) technique, the five individual tar-
gets are clearly visible and well-resolved but also the side-lobes
(marked blue color arrow lines in Fig. S2(a)-(b)) are signifi-
cantly removed or filtered. These results demonstrate that our
proposed MV + DASDSF outperforms the existing algorithms
in suppressing the side-lobes as well as reconstructing closely
spaced point targets with higher resolution and SNR, i.e., fil-
tering the cross-talks of interfering signals. This is because of
compensation of coherency in the PA-signals while arriving at a
given reconstruction point (as it is discussed in the article).

Fig. S2: Reconstructed images of the numerical phantom, con-
sisting of five closely spaced targets in a row, which are obtained
by: (a) MV, (b) MV + CF and (c) MV + DASDSF.

SUPPLEMENTARY 3: COMPARISON OF IMAGING PER-
FORMANCE OF OUR PROPOSED ALGORITHM WITH
THE EXISTING ALGORITHMS AT VARIOUS IMAGING
DEPTHS.

In Fig. 2 and Table 1 (presented in the main text), out of the
eight imaging targets (shown in Fig. 1 in the main text), the
quantitative comparison of imaging performance is presented
only for two representative targets. This is because of page-
limit provided in this article. In this supplementary section, we
present the quantitative comparison of imaging performance
for all of the eight targets at different imaging depths, i.e., quan-
titative comparison of imaging performance of our proposed
algorithm with state-of-the-art algorithms at various imaging
depths. Fig. S3(a) gives plot of variation of the obtainable spa-
tial resolution (represented by FWHM) with respect to imaging
depth for different image reconstruction algorithms while Fig.
S3(b) gives variation of SNR with respect to imaging depth. In
these figures, we observe that the obtainable spatial resolution
and SNR of the reconstructed images degrade in linear fashion
for all of the algorithms (as it is indicated by linear curve-fittings
included in the figures). From Fig. S3(a), we can conclude that
our proposed algorithm gives higher spatial resolution and the
obtainable image resolution does not degrade or remains almost
constant with the imaging depth (unlike the other state-of-the-
art algorithms which give spatial resolution being degraded
with the imaging depth) as it is indicated by magnitudes of the
corresponding slopes. We clearly observe (see Fig. S3(b)) that
SNR of the reconstructed images with our proposed algorithm
is significantly enhanced in comparison to other existing algo-
rithms. The results demonstrate that our proposed algorithm
improves imaging performance in terms of obtainable spatial
resolution as well as SNR (in comparison to MV and MV + CF).

Fig.S3: Plot of variation of FWHM (a) and SNR (b) with respect
to imaging depth (corresponding to eight simulated point tar-
gets). Linear curve-fittings to the experimental data are depicted
in the figures.

SUPPLEMENTARY 4: SCHEMATIC DIAGRAM OF THE
EXPERIMENTAL SET-UP

To evaluate the imaging performance of our proposed algo-
rithm, we conducted experiments in both tissue-mimicking Agar
phantom as well as (ex-vivo) tissue (chicken breast from super-
market). For the experiments, we employed our home-built
photoacoustic tomography (PAT) imaging system which is men-
tioned as PAI in this article. In this PAT system, we employed
a tuneable pulsed OPO laser (SpitLight EVO S OPO-355, In-
nolas Lasers, Germany, tuneable wavelengths ∼ 415 − 670nm,
pulse width ∼ 6nm, tuneable pulse repetition frequency (PRF)
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∼ 1 − 100Hz) that generates a highly collimated optical (pulse)
beam. As it is shown in the schematic diagram (S4(b)). We used
an adaptable optical fiber cable (OFC) to couple the output laser
beam from the laser source and thus, deliver the pulse optical
beam to the imaging sample of interest. In our present experi-
mental studies, we employed pulsed laser beam of wavelength
∼ 532nm, pulse-width ∼ 6ns, and PRF ∼ 100Hz. Energy of the
laser beam was kept less than FDA safety limit (22mJ/cm2). For
boundary detection of PA-signals, that are induced by transient
optical illumination of the sample due to photoacoustic effect [6],
we employed a low cost (∼ INR 3, 50, 000) 16 element linear ar-
ray transducer-based US system (Kae16D, Surabi Biomedical In-
strumentation, India) of center frequency ∼ 3MHz, bandwidth
∼ 3MHz and pitch-width 1.2mm to pick-up the PA-signals from
the targets (in reflection configuration). The transducer and the
OFC are housed in a home-made holding unit and the holding
unit as a whole is kept attached to motion-controlled unit that is
constituted by stepper motors (Newmark NSC-G3, Newmark
Systems Inc., USA). This motion-controlled system facilitates a
precise control of movement of the PAT imaging system in all
of three possible (xyz) directions with a step-size resolution of
80nm/step. These 16 sensor elements in the linear transducer
serve as closely spaced individual and independent (acoustic)
sensors and generate an array of time-resolved PA-signal data
as an output from the US system. Corresponding to an opti-
cal pulse or pulse optical beam (of pulse width ∼ 6nm), these
individual 16 sensors simultaneously acquire PA-signals. At
one scanning position, the imaging system collect 2D-data corre-
sponding to a 2D-cross-sectional plane (say, zx−plane where the
linear sensor elements are aligned along x−axis while the axis of
transducer is aligned along z−axis) of the imaging specimen. By
extending the scanning along y-axis, we can obtain 3D data and
thus, 3D reconstructed images. The entire PAT imaging system
is synchronized and controlled by a LabVIEW-based software
that is developed in our laboratory. As it is mentioned in the
article, this array of time-resolved PA-signals were employed for
image reconstruction. In the similar way to the numerical simu-
lation study, the entire 16 sensor elements or set of time-resolved
data are sub-grouped into 4. We adapted envelope detection
(using Hilbert transform) followed by log compression in the
beamformed signals.

Fig. S4: Photograph of the home-built photoacoustic tomogra-
phy (PAT) imaging system (a) and the corresponding schematic
diagram (b). Front view (c) and side view (d) of the assembly of
linear array transducer and optical fiber cable (OFC) in holding
unit.

SUPPLEMENTARY 5: EXPERIMENTAL RESULTS FOR
AGAR TISSUE-MIMICKING PHANTOM

We also performed experiments in tissue-mimicking Agar phan-
tom to further evaluate the proposed method to a greater extent.
The phantom consists of four black wires, two of which were
placed near to each other (∼ 2.5mm) and at the same depth.
The other two were are set ∼ 4mm above and ∼ 5mm below
from the middle of the two targets. All of the wires, which are
serving as the imaging targets, were embedded in background
Agar phantom with concentration ∼ 1%. While acquiring the
PA-signals, the ultrasound probe was kept perpendicularly to
the four wires. From the reconstructed images (see Fig. S5), it
is clearly observable that our proposed DASDSF beamforming
reduces sidelobes and background noises (dotted circle in Fig.
S5(d)) significantly. In addition, targets are discernible (as they
are indicated by blue color arrow lines in Fig. S5(d)) with bet-
ter resolution and higher signal strength (SNR) in comparison
to that of the conventional methods. The line-plot − at depth
∼ 34mm showing the variation of PA-signal strength (along a
line in lateral direction at the depth ∼ 34mm) − demonstrates
that our proposed algorithm gives higher resolution (indicated
by green color arrow lines in Fig. S5(e)), lower background
noises (indicated by green color dotted circle in Fig. S5(e)), and
higher signal contrast.

Fig. S5: Reconstructed PA-images of the agar phantom (with
the four wires being embedded in backgorund Agar phantom
(photography of a cross-section of the phantom is shown in
(a))) using (b) MV, (c) MV + CF, and (d) MV + DASDSF. (e)
Line-plot of variation of PA-signal strength along a line in lateral
direction at depth ∼ 34mm using our proposed reconstruction
technique in comparison to the conventional techniques.



Letter Optics Letters 4

SUPPLEMENTRY 6: COMPUTATION TIME TAKEN BY
DIFFERENT BEAMFORMING ALGORITHMS FOR EX-
VIVO CHICKEN SAMPLE

To compare the computing performance, the beamforming algo-
rithms were tested on a portable laptop computer with Intel Core
i5-8565 CPU at 1.80GHz and 8GB RAM to compare the comput-
ing performance. The computational reconstruction time using
MV, MV + CF and MV + DASDSF are 35.46sec., 35.69sec., and
35.82sec. respectively for the ex-vivo imaging. It is noticed that
the reconstruction time of the proposed method is close to other
existing beamforming algorithms.
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