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Theoretical analysis of glide-Z2 magnetic 
topological photonic crystals: supplemental 
document
This supplemental document includes some details and tables used in the calculations in the 
main text.

1. Discussion on symmetry and topology of the topological photonic crystal

In this section, we discuss details of the similarities between the photonic crystals in this 
paper and the Kane-Mele model in electronic systems, discussed briefly in Sec. 2.2 in the main 
text. Compared with the case with 𝜅 = 0 preserving TRS in Fig. S1(b), by breaking the TRS the 
band gap opens between the bands 2 and 3 at the 𝑃 points, shown in (a) and (c) with 𝜅(111) = 
±10𝑖. The case with 𝜅(111) = +10𝑖 is found to be topological in Ref. [1], and because of the TRS, 
the other case with 𝜅(111) = −10𝑖 is also topological. The key to open the gap and to realize the 
topological phase is the splitting of the four-fold degenerate generalized Dirac point at the 𝑃 
point. Meanwhile, as we see later, the irreps at the 𝑃 points do not affect the values of the 
topological invariant. It is consistent with the fact that the topological surface states appear both 
in Im(𝜅(111) ) > 0 and in Im(𝜅(111) ) < 0, because the two sides Im(𝜅(111) ) > 0 and Im(𝜅(111) ) < 0 
are related by time-reversal symmetry. This situation is similar to the Kane-Mele model (Figs. 
S1(d)-(f)), which is a tight-binding model on a honeycomb lattice in the 𝑥𝑦 plane with spin-
orbit interaction [2, 3], showing the two-dimensional topological insulator (TI) phase with TRS:    

H = 𝑡
〈𝑖,𝑗〉

𝑐+
𝑖 𝑐𝑗 + iλ𝑆𝑂

〈〈𝑖,𝑗〉〉
𝑐+

𝑖 𝒔 ∙ 𝒆𝑖𝑗 𝑐𝑗 ,

where 𝑡 and 𝜆so are real parameters, 𝑐+
𝑖 = 𝑐+

𝑖↑,𝑐+
𝑖↓  are creation operators for up-spin and down-

spin electrons at the 𝑖-th site in the honeycomb lattice, 〈𝑖,𝑗〉 denotes a pair of nearest neighbor 
sites, and 〈〈𝑖,𝑗〉〉 denotes a pair of next nearest neighbor sites. 𝒔 = (𝑠𝑥, 𝑠𝑦, 𝑠𝑧) are the Pauli 
matrices. The first term is a nearest-neighbor hopping term, and the second term represents 
spin-orbit interaction for next-nearest neighbor hopping with 𝒆𝑖𝑗 = 𝒅1

𝑖𝑗 × 𝒅2
𝑖𝑗 |𝒅1

𝑖𝑗 × 𝒅2
𝑖𝑗| , 

where 𝒅1
𝑖𝑗 and 𝒅2

𝑖𝑗 are vectors of the bonds in the honeycomb lattice constituting the next-nearest 
neighbor hopping from site 𝑗 to site 𝑖. When 𝜆so is nonzero, Dirac points at the 𝐾 and 𝐾’ points 
in the BZ become gapped and the system becomes a 2D TI, regardless of the sign of 𝜆so. The 
𝑍2 topological invariant for the 2D TI is nontrivial, because the product of the parities at four 
TRIM (Γ and 3𝑀 points in the BZ) in this model is −1, as addressed in Ref. [4]. Thus, the 𝑍2 
topological invariant does not depend on the irreps at the K point. Thus, topological properties 
in the BPI photonic crystal are similar to those in the Kane-Mele model. The BPI photonic 
crystal is topological, regardless of the sign of the magnetization represented by 𝜅, which opens 
the gap at the 𝑃 point. Likewise, the Kane-Mele model is topological, regardless of the sign of 
the spin-orbit coupling 𝜆so, which opens the gap at the𝐾 point. In both cases, the topological 
invariant is independent of the irreps at 𝑃 or K points, because these points are not time-reversal 
invariant momenta (TRIM).

Here we note that their similarity is limited to the point discussed above, and they are quite 
different in other aspects. For example, their topological phases are different. The BPI photonic 
crystal is in the glide-Z2 topological phase protected by the glide symmetry, while the Kane-
Mele model is in the Z2 topological insulator phase protected by the time-reversal symmetry. 
Therefore, corresponding topological properties such as surface states are different. 
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Fig. S1. Band structures for (a)-(c) the BPI photonic crystal and (d)-(f) the Kane-Mele model with 
inversion symmetry. The band structures with magnetization, where (a) 𝜀33 = 11 and 𝜅 = 10𝑖, 10𝑖, −10𝑖, 
−10𝑖 and (c) with 𝜀33 = 11 and𝜅 = −10𝑖, −10𝑖, 10𝑖, 10𝑖 for the red, yellow, green and blue rods shown in (a), 
respectively, are exactly the same, because of the TRS, and both sides are topological. This situation is 
similar to the Kane-Mele model with changing the spin-orbit coupling across 𝜆so across zero, and the system 
is topological both for the positive 𝜆so and the negative 𝜆so. The parameter values are 𝑡 = 0 and (d) 𝜆so = 
−0.1, (e) 𝜆so = 0, and (f) 𝜆so = 0.1. The high-symmetry points for the BPI photonic crystal are shown in (c), 
whereas those for the Kane-Mele model are shown in the inset of (e), denoting the Brillouin zone of the 
honeycomb lattice.

2. GLIDE-𝑍2 INVARIANT FOR THE PHOTONIC CRYSTAL

In this section, we discuss details of the derivation of the formula of the Z2 topological 
invariant for the cubic photonic crystals in Eq. (3)  in Sec.3.3 of the main text. In magnetic 
glide-symmetric systems, the glide-𝑍2 topological invariant can be defined, which characterizes 
a topological crystalline insulator phase [5-7]. Here we first review the definition of the glide-
𝑍2 topological invariant, and then we apply the formula to the photonic crystals. Let us begin 
with the SG 7 (𝑃𝑐) generated by the glide operation 𝐺𝑦 =  {𝑀𝑦 | (𝑐/2)𝑧} and translations{𝐸|𝑎𝒙
}, {𝐸|𝑏𝒚}, and {𝐸|𝑐𝒛} in a monoclinic primitive lattice, where we define 𝑎, 𝑏 and 𝑐 to be the 
lattice constants along the 𝑥, 𝑦, and 𝑧 axes, respectively. In SG 7, we can define the glide-𝑍2 
invariant 𝜈 as [5–7]

  ν = 1
2π ∫𝐴 𝐹𝑥𝑦𝑑𝑘𝑥𝑑𝑘𝑦 + ∫𝐵 𝐹―

𝑧𝑥𝑑𝑘𝑧𝑑𝑘𝑥 ― ∫𝐶 𝐹+
𝑧𝑥𝑑𝑘𝑧𝑑𝑘𝑥

― 1
π 𝛾+

𝐴′𝐵𝐴 + 𝛾―
𝐸𝐷𝐸′

 (mod 2) ,                             
where A, B, and C are the regions shown in Fig. S2(a). The superscript (±) indicates the glide 
sectors with eigenvalues of the glide operator  𝑔± =  ± 𝑒―𝑖𝑘𝑧 𝑐/2 in spinless systems, such as 
photonic systems. 𝐹±

𝑖𝑗(𝒌) is the corresponding Berry curvatures for these subspaces 𝐹±
𝑖𝑗(𝒌) =

∂𝑘𝑖 𝐴
±
𝑗 (𝒌) ― ∂𝑘𝑗 𝐴

±
𝑖 (𝒌), and 𝛾±

𝜆  is the corresponding Berry phase within the  𝑔±-sector along 
the path 𝜆,  𝛾±

𝜆  = ∮𝜆 𝑨±(𝒌) ∙ 𝑑𝒌. 𝑨±(𝒌) is the corresponding Berry connections given by the 
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eigenstates |𝑢±
𝑛𝒌⟩: 𝑨±(𝒌) ≡ 𝑖∑𝑛:𝑜𝑐𝑐⟨𝑢±

𝑛𝒌│∇𝒌│𝑢±
𝑛𝒌⟩, where the band index 𝑛 runs over the bands 

below the gap considered. For fermions, this sum is over the occupied band indices. The Berry-
phase terms 𝛾+

𝐴′𝐵𝐴, 𝛾―
𝐸𝐷𝐸′

 in Eq. (S2) are along the paths 𝐴’→ 𝐵 → 𝐴, and 𝐸 → 𝐷 → 𝐸’. The 
value of 𝜈 is either 𝜈 = 0 or 𝜈 = 1, corresponding to the topologically trivial and nontrivial 
phases, respectively. 

Fig. S2. (Color online) Brillouin zones for the SGs 7, 15 and 230. (a) Upper half of the Brillouin zone 
of the monoclinic simple lattice in 7 (𝑃𝑐). (b) Upper half of the Brillouin zone of the monoclinic base-
centered lattice in 15 (𝐶2/𝑐). Γ, Y, V, A, M, and L denote the high-symmetry points in SG 15. (c) Upper 
half of the Brillouin zone of the body-centered cubic lattice in 230 (𝐼𝑎3𝑑). Γ, 𝑃, 𝐻, and 𝑁 denote the 
high-symmetry points in SG 230. Here, for comparison, all the lattice constants are set to be unity. 

Our target in the present paper is the photonic crystals in the BCC lattice, which is a 
nonprimitive lattice. As revealed in our previous paper [8], the nonprimitive nature of the lattice 
makes the formula of the 𝑍2 topological invariant crucially different from that in the primitive 
lattice in 7. Therefore, we here explain our results in the previous paper [8] for the nonprimitive 
lattice, for an application to the photonic crystals. By adding another translation {𝐸| 12(𝑎𝒙 +  𝑏𝒚
)}, the space group 7 becomes 9 (𝐶𝑐) in a monoclinic base-centered (nonprimitive) lattice. The 
formula for the glide-𝑍2 topological invariant in the space group 9 is expressed in terms of 
integrals in the 𝑘-space found in Ref. [8], and it is still not easy to evaluate. Meanwhile, in the 
presence of inversion symmetry, like the photonic crystals of our interest, its formula is solely 
expressed in terms of the irreps at high-symmetry points, and is much easier to evaluate. In this 
case the space group becomes 15, and the formula is obtained as [8]

( ―1)𝜈 =
𝑖∈𝑜𝑐𝑐

𝜁+
𝑖 (Γ)𝜉𝑖(V)

𝜉𝑖(Y)
𝜁+

𝑖 (Y)
,

where 𝜁+
𝑖  is a 𝐶2 eigenvalue in the 𝑔+ sector, 𝜉𝑖 is an inversion parity for the 𝑖-th occupied state, 

and the product runs over the bands below the gap considered. We note that in the expressions 
of the glide-𝑍2 topological invariant in Eq. (S3), the glide sectors with  𝑔± =  ± 𝑒―𝑖𝑘𝑧 𝑐/2 can 
be switched. Namely, one can replace 𝜁+with 𝜁― in Eq. (S3).

Then, one can directly calculate the glide-𝑍2 invariant in 230 by using Eq. (S3), because 
15 is one of the 𝑡-subgroups of 230 [9], and their high-symmetry points are directly related with 
each other. The high-symmetry points Γ,𝑌, and 𝑉 in 15 in Eq. (S3) are projections of Γ, 𝐻, and 
𝑁 in 230, respectively, as seen from the Brillouin zones for 15 in Fig. S2(b) and for 230 in Fig. 
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S2(c). Here we assume that there exists a band gap between the second and third bands when 
TRS is broken by applying a magnetic field, and from Eq. (S3), the glide-𝑍2 topological 
invariant for this band gap is given by

( ―1)𝜈 =
𝑖∈𝑜𝑐𝑐

𝜁+
𝑖 (Γ)𝜉𝑖(N)

𝜉𝑖(H)
𝜁+

𝑖 (H)
,

where the product is taken over the bands below the gap considered. Remarkably, in 230, the 
formula (S4) for the 𝑍2 topological invariant is further simplified drastically, by evaluating Eq. 
(S4) term by term. First, the 𝐻 point has three possible physically irreducible representations, 
𝐻1,𝐻2𝐻3, and 𝐻4, which are two-, four- and six-dimensional, respectively. In particular, 𝐻1 and 
𝐻2𝐻3 are realized as the lowest modes at the 𝐻 point in the BPI and DG photonic crystals, 
respectively, as summarized in Table 2. We find that ∏𝑖

𝜉𝑖(H)
𝜁+

𝑖 (H)
=1 for all the three possibilities, 

by direct calculation from Table S4 in Supplemental Document. Second, the N point has two 
possible physically irreducible representations, 𝑁1 and 𝑁2. Both of them are two-dimensional, 
consisting of one odd-parity and one even-parity modes, Thus, both irreps contribute to the 
product in Eq. (S4) by a factor ∏𝑖∈𝑁𝑎 𝜉𝑖(N) = ―1 (𝑎 = 1, 2). Therefore, the total contribution 
from the 𝑁 point is (−1)𝑛/2, where 𝑛 is the number of bands below the gap considered. Third, 
the Γ point allows ten irreps, Γ𝑎± (𝑎 = 1,⋯ ,5), and all of them have a product equal to ∏𝑖 𝜁+

𝑖 (Γ)
= 1. Nonetheless, we need to note that the eigenmodes with 𝜔 = 0 at the Γ point are special in 
any photonic crystals. Because of the transversality condition of the electromagnetic wave, the 
eigenmodes with 𝜔 = 0 at the Γ point do not follow either of the ten irreps shown above, and 
therefore we need to calculate on such modes separately. From the previous subsection, because 
the two eigenmodes at 𝒌 = (0, 𝑘𝑦, 0) are two linearly polarized modes represented by 𝜓𝑥(0, 𝑘𝑦, 
0) =𝒙𝑒𝑖𝑘𝑦𝑦 and 𝜓𝑧 (0, 𝑘𝑦, 0) = 𝒛𝑒𝑖𝑘𝑦𝑦, we can construct eigenmodes in the 𝑔+ sector as 𝜓𝑥 (0, 
𝑘𝑦, 0) + 𝜓𝑥 (0, −𝑘𝑦, 0) and 𝜓𝑧 (0, 𝑘𝑦, 0) + 𝜓𝑧 (0, −𝑘𝑦, 0). Both of them have a 𝐶2𝑦 eigenvalue 
equal to −1, and their product is +1, which contributes trivially to the product in Eq. (S4). To 
summarize, the glide-𝑍2 invariant 𝜈 for 230 is calculated as 

( ― 1)ν =  ( ― 1)𝑛/2 → ν =  𝑛/2 (mod 2). 

It means that when the number of bands 𝑛 below the gap is 𝑛 = 4𝑚+2 (𝑚: integer), the 
photonic crystal is topologically nontrivial, and when it is 𝑛 = 4𝑚 (𝑚: integer), it is 
topologically trivial, provided the gap is open everywhere in the Brillouin zone. We note the 
above results remains true for 206, since the irreps at P points are identical to that of its 
supergroup 230. 

On the other hand, at the 𝑃 point, there are two possible physically irreps under the TRS, 
𝑃1𝑃2 and 𝑃3, both of which are four-dimensional. Therefore, when 𝑛 = 4𝑚 + 2 (i.e. 𝜈 = 1), there 
is no gap at the 𝑃 point when the TRS is preserved. Therefore, we need to open a gap at𝑃 by 
breaking TRS to make it topologically nontrivial. On the other hand, when 𝑛 = 4𝑚 (i.e. 𝜈 = 0), 
the 𝑃 point is gapped. Here, the 𝑃1𝑃2 and 𝑃3 irreps support the doubly degenerate Dirac point, 
and the generalized Dirac point, respectively, and in both cases, quad-helicoid surface states 
are realized on the (001) surface, without an anticrossing between two helicoids, thanks to the 
combination of the two glides and the time-reversal symmetries [10, 11], and another 𝑍2 
topological invariant could be defined to represent nontrivial winding of the helicoid surface 
states. Let us call it the helicoid-𝑍2 invariant and how the helicoid-𝑍2 and glide-𝑍2 are mutually 
related is an open question. 

We note that from Eq. (S4), the irreps at the 𝑃 point in 230 do not contribute to the glide-
𝑍2 invariant. Thus, while this topological phase is realized by opening the band gap between 
the second and third bands at the 𝑃 points when the photonic crystal has magnetization, this 
bandgap opening does not lead to topological band inversion. It is similar to the K point in the 
Kane-Mele model of Eq. (S1) with inversion symmetry. 

(S4)
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Thus far, we have understood how to make nontrivial glide-𝑍2 topological invariant in Eq. 
(7). To make the photonic crystal to have topological surface states, it is important how we 
break the TRS, i.e. how we introduce magnetization into dielectrics. Here we introduce two 
types of magnetizations, classified in terms of magnetic space groups (MSGs), and we call 
these types I and II. The type I is the MSG 142.565, where the numberings of the MSG are 
summarized in the Bilbao Crystallographic Server [12]. It corresponds to the BPI photonic 
crystal with the two dielectric rods (red and yellow in Fig. 1 in the main text) having +𝑧 
magnetization, and the other two (blue and green in Fig. 1 in the main text) having −𝑧 
magnetization, as employed in Ref. [1]. The type II is the MSG 142.567, corresponding to the 
DG photonic crystal with the uniform magnetization along the +𝑧 direction employed in Ref. 
[13]. From Eq. (S5), the photonic crystal is in the topological phase, if a gap is open between 
the second and the third lowest bands. We need to check whether the photonic crystal really 
opens a gap between the bands 2 and 3 when the TRS is broken. We find that in the type I the 
photonic crystal opens a gap everywhere in 𝑘-space, while in the type II, the photonic crystal 
does not open a gap. This is explained in terms of the minimal band connectivity 𝑀 in photonic 
crystals. This notion of minimal band connectivity 𝑀 for a nonmagnetic photonic crystal has 
been introduced in Ref. [14]. Here we extend the theory to magnetic photonic crystals. The 
minimal band connectivity 𝑀 is defined as a minimum number of bands 𝑀, such that the gap 
can open everywhere in the Brillouin zone between the 𝑀th and (𝑀 +1)th bands. Because the 
two lowest bands in any photonic crystals approaches 𝜔 = 0 when 𝒌 approaches zero, the 
minimal band connectivity should be 𝑀 ≥ 2. We can show that the values of 𝑀 is 𝑀 = 2 in type 
I (MSG 142.565) and 𝑀 ≥ 4 in type II (MSG 142.567); it means that the gap between the second 
and third lowest bands can be open in type I, but not in type II.

3. TIGHT-BINDING MODEL FOR GLIDE-Z2 TOPOLOGICAL PHASE WITH 
HINGE STATES

In the main text, we mention that in the presence of inversion symmetry, the glide-Z2 
topological phase is equivalent to a higher-order topological insulator phase, as proposed in 
Refs. [5-8]. In this appendix, to demonstrate this equivalence, we numerically confirm 
existence of the hinge states in the glide-Z2 topological phase in a simple tight-binding model. 
To this end, let us consider the following eight-band tight-binding model. The unit cell consists 
of four lattice sites A1 (0, 1

4, 0), A2 (0, 34, 0), B1 (0, 1
4, 1

2), and B2 (0, 3
4, 1

2), and the primitive 
translation vectors are (1, 0, 0), (0, 1, 0) and (0, 0, 1), where the lattice constants are set to be 
unity (see Fig. S3(a)). We take the model to be in the space group No. 50 (Pban), and the four 
sites are in the Wyckoff positions 4i. The model consists of two kinds of layers along the xy 
plane, alternately stacked along the z direction, and each layer is a two-dimensional Chern 
insulator. One layer is a Chern insulator layer with the Chern number C = +1 on z = n, n ∈ Z 
consisting of A1 and A2 sublattices, and the other is a Chern insulator layer with the Chern 
number C = −1 on z = n + 12 , n ∈ Z consisting of B1 and B2 sublattices. Let HA and HB denote 
the Hamiltonians for the former layers and the latter layers, respectively. Within this symmetry, 
we also introduce interlayer hoppings HAB. The Hamiltonian is written as 

  
𝐻 = 𝐻𝐴 + 𝐻𝐵 + 𝐻𝐴𝐵,

𝐻𝐴 =
𝑛 𝒓=(𝐙,𝐙/2―1/4)

𝑚𝜓+
𝐴,𝒓,𝑛𝜎𝑧𝜓𝐴,𝒓,𝑛 + 𝜓+

𝐴,𝒓+𝑥,𝑛
𝜎𝑧 + 𝑖𝜎𝑥

2 𝜓𝐴,𝒓,𝑛 + h.c.

+ 𝜓+
𝐴,𝒓+𝑦/2,𝑛

𝜎𝑧 + 𝑖𝜎𝑦

2 𝜓𝐴,𝒓,𝑛 + h.c. ],

(S6)
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𝐻𝐵 =
𝑛 𝒓=(𝐙,𝐙/2―1/4)

𝑚𝜓+
B,r,n𝜎𝑧𝜓B,r,n + 𝜓+

𝐵,𝒓+𝑦/2,𝑛

𝜎𝑧 ― 𝑖𝜎𝑦

2 𝜓𝐵,𝒓,𝑛 + h.c.

+ 𝜓+
𝐵,𝒓+𝑥,𝑛

𝜎𝑧 + 𝑖𝜎𝑥

2 𝜓𝐵,𝒓,𝑛 + h.c. ],

𝐻𝐴𝐵 =
1
2

𝑛 𝒓=(𝐙,𝐙+1/4)
𝜓+

𝐴,𝒓,𝑛𝜓𝐵,𝒓,𝑛 +
𝒓=(𝐙,𝐙―1/4)

𝜓+
𝐴,𝒓,𝑛+1𝜓𝐵,𝒓,𝑛 + h.c. ,

where r runs over the lattice sites within the xy plane,  𝒓 = (𝑟1,𝑟2),𝑟1 ∈ 𝐙,𝑟2 ∈ 𝐙 ± 1
4, σ𝛼(α = x, 

y, z) are the Pauli matrices, and ψA,r,n (ψB,r,n) is an annhihilation operator at the lattice site at (r, 
n) in the sublattice A (at (r, n + 12 ) in the sublattice B). When the interlayer term HAB is absent, 
it is exactly the model of the layer construction called (010; 0), which is known to show the 
glide-Z2 topological phase in some parameter range. As we show later, this model preserves 
the glide symmetry and inversion symmetry. The surface state originating from the chiral edge 
states of the Chern-insulator layers always appear. We then add the term HAB to see whether 
hinge states of the higher-order topological insulating phase appear.

Fig. S3. (a) Schematic figure of our model showing a glide-Z2 topological phase with four sites 
in the unit cell marked by the black dotted line. The model is manifestly invariant under glide 

symmetry and inversion symmetry. (b)-(d) Band structures for slabs with (b) the (100) 
surfaces, (c) the (010) surfaces, and (d) the (001) surfaces. The thickness of the slab is n=20. In 

(b), the gapless surface states exist on the (100) surface which preserves glide symmetry. On 
the other hand, the surface states are gapped on (c) the (010) surface and (d) the (001) surface 
breaking glide symmetry. The high-symmetry points are given as Γ = (0, 0), M = (, ) on the 
(100), (010), and (001) surfaces, Y = (, 0), Z = (0, ) on the (100) surface, X = (, 0), Z = (0, 
) on the (010) surface, and X = (, 0), Y = (0, ) on the (001) surface. (e) The gapless band 

structure for the rod configuration. The rod is finite along the y and z direction with the sizes of 
the system along the two directions equal to n=10, and is periodic along the x direction. It is 
gapless, with the gapless states lying on hinges. (f) Density plot of the wavefunctions of the 

gapless states. They are localized on hinges of the rod.
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The Hamiltonian H shows the glide-Z2 topological phase if −1.5 < m < −0.5 and 0.5 < m < 
1.5, the Weyl semimetal phase if 1.5 < |m| < 2.5 and |m| < 0.5, and a trivial phase if 2.5 < |m|. 
Let us focus on the glide-Z2 topological phase at m = −1. Figures S3(b)-(d) are band structures 
of a slab with (b) the (100) surface, (c) the (010) surface, and (d) the (001) surface. The gapless 
surface states emerge on the (100) surface preserving the glide symmetry [Fig. S3(b)] while the 
band structures are gapped on the (010) surface [Fig. S3(c)] and the (001) surface [Fig. S3(d)].

Here we comment on the flat dispersion of the gapless surface states along the Z ― Γ ― Z in 
Fig. S3(b). It has been known that the topologically nontrivial phase with the glide symmetry 
has a single surface Dirac cone either along Z ― Γ ― Z or M ― Y ― M [3, 4]. We first note that 
by additional inversion I = {I|0} and glide Gz={Mz|

1
2

𝑦} symmetries of the model, the topological 
surface Dirac cone is expected at either of the high-symmetry points at Z, Γ, Y, or M. Athough 
the flat dispersion in Fig. S3 may look different from the expected Dirac cone, we here explain 
that the flat dispersion along the Z ― Γ ― Z line is indeed a special case of the single Dirac cone 
at Z, and that this flat dispersion is caused by other additional symmetries in this model. First, 
this model preserves particle-hole symmetry represented by an operator U= σyτy diag(1, 
exp(−iky))ρ, where τ and ρ are matrices acting on the sublattice space spanned by four sublattice 
sites (τz, ρz) = (+ +), (+ −), (− +), (− −) for the A1, A2, B1 and B2 sublattices respectively. Then 
the Hamiltonian H(k) preserves the particle-hole symmetry; U(k)H(k)U(k)−1 = −H(k)∗, meaning 
that the spectrum is symmetric with respect to E = 0, and the Dirac point for the topological 
surface Dirac cone appears at E = 0. In the slab calculation, such a Dirac point at E = 0 appears 
at the Z point, and it consists of two states per each surface, with glide eigenvalues gy=+i and 
gy=−i. Next, we consider how these degenerate states evolve along the Z ― Γ line. On this line, 
the Hamiltonian has an additional symmetry, represented by Q = ρy, commuting with the 
Hamiltonian. Therefore, along the Z ― Γ line, the glide symmetry Gy={My|

1
2

𝑧} represented by 
an operator

𝐺y = exp( ― i𝑘𝑧)
1 𝜏

𝜌𝑥       

and the Q symmetry are both preserved, and they anticommute. Therefore, along this Z ― Γ line 
the two states with gy = exp(−ikz/2) and gy = − exp(−ikz/2) remain degenerate, and they remain 
fixed at E = 0 due to the particle-hole symmetry. Thus, to summarize, the flat surface dispersion 
on the Z ― Γ line can be regared as a single Dirac-cone topological surface states due to the 
glide symmetry, and this flattening of the dispersion is caused by the additional symmetry 
represented by the Q operator on the ky = 0, the glide Gy symmetry and the particle-hole 
symmetry.

As we wrote in Sec. 5 in the main text, the glide-Z2 topological crystalline insulator is 
identically the higher-order topological insulator in the presence of inversion symmetry. This 
comes from the relation ν = z4/2 (mod 2) in which z4 is the Z4 topological invariant defined 
modulo 4 for centrosymmetric systems [7,8]. To see the hinge states characteristic of the higher-
order topological insulator phase, the topological surface states should be absent, because 
otherwise the hinge states are hidden behind. To this end, we consider rod configuration with 
(010) and (001) surfaces, which is periodic along the x direction. We then show that the band 
structure for the rod geometry exhibits the gapless states depicted in Fig. S3(e). The 
wavefunctions of the gapless states are strongly localized on hinges of the rod, as is seen in the 
density of the wavefunctions of the gapless states in Fig. S3(f). This results indeed show that 
the glide-Z2 topological crystalline insulator is identically the higher-order topological insulator 
in the presence of inversion symmetry, as expected.

4. SUMMARY OF TABLES USED FOR THE SYMMETRY ANALYSIS
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Here we summarize useful information for the calculations in the main text. Table S1 shows 
decompositions of the plane-wave electromagnetic waves in vacuum into irreps in 230 for the 
lowest several bands at the high-symmetry points in the Brillouin zone of the BCC lattice, used 
in Sec. 3 in the main text.

In the decomposition into irreps in making Table S1, we use the character table of 
irreducible representations at high-symmetry points H and N in Table S3, and we summarize 
some of their matrix forms used in the main text in Table S4. We show the compatibility 
relations between the P point and the H point via Λ in Table S2 in 230 [9]. It shows the 
relationships between the irreps at P point and those at H point and along the C3-symmetric Λ 
line. This compatibility relations are used for the analysis of band connectivities in Sec. 3.3. 
When the time-reversal symmetry is considered, the irreps in the curly bracket are degenerate, 
forming a physically irrep. The full information is summarized in the database in Ref. [9]. The 
Wyckoff positions in 230 used throughout the paper are shown in Table S5 [14]. The 
multiplicities and the Wyckoff letters are shown in the first column, the site symmetry is shown 
in the second column, and the coordinates with two sets (0, 0, 0)+ and (1

2, 1
2 , 1

2)+ are given in 
the rest of Table S5 [14].

Table S1. Summary of the characters for the representations of the lowest bands at high symmetry 
wavevectors and their decomposition into irreducible representations at the 8 smallest wavevectors in vacuum 
with a frequency Ω0 where b = 2π/a with the lattice constant a in 230 with the TRS. Here C2 = {2001|0 

𝟏
𝟐 0}, C3 = 

{3+
111|000}, C4 = {4+

111|
𝟏
𝟒

 𝟑
𝟒

 𝟏
𝟒

 }, C’2 = {2110|
𝟑
𝟒

 𝟏
𝟒

 𝟏
𝟒

 }, and I = {𝟏|000}. 3C2, 8C3, 6C4 and 6 C’2represent the conjugacy 
classes of the respective symmetry operation. The numbers in the parentheses represent the dimensions of the 

irreps

R 0 E 3C2 8C3 6C4 6C’2 I 3IC2 8IC3 8IC4 6IC’2 Irreps

(1) 2b 24 0 0 0 -24 0 0 0 0 0

H(0) b 12 -4 0 0 0 0 0 0 0 0 H1 (2) + H2H3 (4) + H4(6)

H(1) 3b 16 0 -2 0 0 0 0 0 0 0 H2H3 (4) + 2H4 (6)

N(0) 2
2 b 4 0 - - 4 0 0 - - 0 2N1 (2)

N(1) 6
2 b 8 0 - - 0 0 0 - - 0 2N1 (2) + 2N2 (2)

N(2) 10
2 b 8 0 - - 0 0 0 - - 0 2N1 (2) + 2N2 (2)

P(0) 3
2 b 8 0 -1 - - - - - 0 0 P1P2 (4) + P3 (4)

P(1) 11
2 b 24 0 0 - - - - - 0 0 2P1P2 (4) + 4P3(4)

Table S2. Compatibility relations with time-reversal symmetry between the P point and the H point via the Λ 
line, which is along the C3 invariant axis. The curly bracket { } represents physically irreducible 

representations, which are degenerate when the TRS is present. The full information is summarized in Ref. 
[9].

k-vector Compatibility relations k-vector Compatibility relations k-vector



P
{P1(2) P2(2)} → 2Λ3(2)

P3(4) → Λ1(1) ⊕  Λ2(1) ⊕  
Λ3(2)

Λ

H1(2) → Λ1(1) ⊕ Λ2(1)

{H2(2)H3(2)} → 2Λ3(2)

H4(6) → Λ1(1) ⊕ Λ2(1) ⊕
2Λ3(2)

H

 Table S3. Summary of characters of irreducible representations at high-symmetry points H and N adopted 
from Ref. [9].

H1 H2 H3 H4 N1 N2 H1 H2 H3 H4 N1 N2

{1|𝑡1𝑡2𝑡3} 2 2 2 6 2 2 {1|000} 0 0 0 0 0 0

{2001|0
1
2 0} -2 -2 -2 2 0 0 {𝑚001|0

1
2 0} 0 0 0 0 0 0

{2010|
1
2 00} -2 -2 -2 2 {𝑚010|

1
2 00} 0 0 0 0

{2100|00
1
2} -2 -2 -2 2 {𝑚100|00

1
2} 0 0 0 0

{3+
111|000} 2 -1 -1 0 {3+

111|000} 0 ― 3𝑖 3𝑖 0

{3+
111|00

1
2} -2 1 1 0 {3+

111|00
1
2} 0 3𝑖 ― 3𝑖 0

{3+
111|0

1
2 0} -2 1 1 0 {3+

111|0
1
2 0} 0 3𝑖 ― 3𝑖 0

{3+
111|

1
2 00} -2 1 1 0 {3+

111|
1
2 00} 0 3𝑖 ― 3𝑖 0

{3―
111|000} 2 -1 -1 0 {3―

111|000} 0 3𝑖 ― 3𝑖 0

{3―
111|

1
2 00} -2 1 1 0 {3―

111|
1
2 00} 0 ― 3𝑖 3𝑖 0

{3―
111|00

1
2} -2 1 1 0 {3―

111|00
1
2} 0 ― 3𝑖 3𝑖 0

{3―
111|0

1
2 0} -2 1 1 0 {3―

111|0
1
2 0} 0 ― 3𝑖 3𝑖 0

{2110|
3
4 

1
4  

1
4 } 0 0 0 0 2 -1 {𝑚110|

3
4 

1
4  

1
4 } 0 0 0 0 0 0

{2110|
1
4 

1
4  

1
4 } 0 0 0 0 0 0 {𝑚110|

1
4 

1
4  

1
4 } 0 0 0 0 0 0

{4―
001|

1
4 

1
4  

3
4 }0 0 0 0 {4―

001|
1
4 

1
4  

3
4 }0 0 0 0

{4+
001|

1
4 

3
4  

1
4 }0 0 0 0 {4+

001|
1
4 

3
4  

1
4 }0 0 0 0

{4―
100|

3
4 

1
4  

1
4 }0 0 0 0 {4―

100|
3
4 

1
4  

1
4 }0 0 0 0



{2011|
1
4 

3
4  

1
4 } 0 0 0 0 {𝑚011|

1
4 

3
4  

1
4 } 0 0 0 0

{2011|
1
4 

1
4   

1
4 } 0 0 0 0 {𝑚011|

1
4 

1
4   

1
4 }0 0 0 0

{4+
100|

1
4 

1
4  

3
4 }0 0 0 0 {4+

100|
1
4 

1
4  

3
4 }0 0 0 0

{4+
010|

3
4 

1
4  

1
4 }0 0 0 0 {4+

010|
3
4 

1
4  

1
4 }0 0 0 0

{2101|
1
4 

1
4  

3
4 } 0 0 0 0 {𝑚101|

1
4 

1
4  

3
4 } 0 0 0 0

{4―
010|

1
4 

3
4  

1
4 }0 0 0 0 {4―

010|
1
4 

3
4  

1
4 }0 0 0 0

{2101|
1
4 

1
4   

1
4 } 0 0 0 0 {𝑚101|

1
4 

1
4   

1
4 }0 0 0 0

Table S4. Summary of matrices for the irreducible representations at high-symmetry points Γ = (0, 0, 0), H = 
( 

𝟏
𝟐, 0, 

𝟏
𝟐 ) and N = (

𝟏
𝟐 , 

𝟏
𝟐 , 

𝟏
𝟐 ) adopted from Ref. [9]. We show the matrices for the inversion, twofold rotation and 

glide reflections only, which we use for a calculation of the glide-Z2 invariant in the main text. Note that the 
convention for the symmetry operations are a bit different from that used in the main text, but this difference 

does not affect the calculation of the glide-Z2 invariant.

{1|000} {2010|
1
2 00} {𝑚010|

1
2 00}

1
+ 1 1 1

1
- -1 1 -1

2
+ 1 1 1

2
- -1 1 -1

3
+

1
1

1
1

1
1

3
-

―1
―1

1
1

―1
―1

4
+

1
1

1

―1
―1

1

―1
―1

1

4
-

―1
―1

―1

―1
―1

1

1
1

―1

5
+

1
1

1

―1
―1

1

―1
―1

1

5
-

―1
―1

―1

―1
―1

1

1
1

―1

N1

1
―1

―1
―1

1
―1



N2

1
―1

1
1

―1
1

H1

1
―1

―1
―1

―1
1

H2

1
―1

―1
―1

―1
1

H3

1
―1

―1
―1

―1
1

H4 diag(1, 1, 1, -1, -1, -1) diag(1, -1, 1, -1, 1, 1) diag(1, -1, 1, 1, -1, -1)

Table S5. Summary of Wyckoff positions in 230 except for the most general one 96h. The first column denotes 
the multiplicity and the Wyckoff letter, the second column denotes site symmetry, and the coordinates with 

two sets (0, 0, 0)+ and (
𝟏
𝟐, 

𝟏
𝟐 , 

𝟏
𝟐)+. Asymmetric unit is given by ― 𝟏

𝟖
≤ 𝒙 ≤ 𝟏

𝟖
; ― 𝟏

𝟖
≤ 𝒚 ≤ 𝟏

𝟖
;𝟎 ≤ 𝒛 ≤ 𝟏

𝟒
;

𝐦𝐚𝐱(𝒙, ― 𝒙,𝒚, ― 𝒚) ≤ 𝒛 adopted from Ref. [14].

1
8, 𝑦, 𝑦 +

1
4

3
8, 𝑦,𝑦 +

3
4

7
8, 𝑦 +

1
2,𝑦 +

1
4

5
8, 𝑦 +

1
2, 𝑦 +

3
4

𝑦 +
1
4, 

1
8, 𝑦 𝑦 +

3
4, 

3
8,𝑦 𝑦 +

1
4, 

7
8,𝑦 +

1
2 𝑦 +

3
4, 

5
8,𝑦 +

1
2

𝑦, 𝑦 +
1
4,

1
8 𝑦, 𝑦 +

3
4,

7
8 𝑦 +

1
2, 𝑦 +

1
4,

7
8 𝑦 +

1
2, 𝑦 +

3
4,

5
8

7
8, 𝑦,𝑦 +

3
4

5
8, 𝑦, 𝑦 +

1
4

1
8, 𝑦 +

1
2,𝑦 +

3
4

3
8, 𝑦 +

1
2, 𝑦 +

1
4

𝑦 +
3
4, 

7
8,𝑦 𝑦 +

1
4, 

5
8,𝑦 𝑦 +

3
4, 

1
8,𝑦 +

1
2 𝑦 +

1
4, 

3
8,𝑦 +

1
2

48g ..2

𝑦, 𝑦 +
3
4,

7
8 𝑦, 𝑦 +

1
4,

5
8 𝑦 +

1
2, 𝑦 +

3
4,

1
8 𝑦 +

1
2, 𝑦 +

1
4,

3
8

𝑥,0,
1
4 𝑥 +

1
2,0,

3
4

1
4, 𝑥,0,

3
4, 𝑥 +

1
2,0

0,
1
4, 𝑥 0,

3
4,𝑥 +

1
2

3
4, 𝑥 +

1
4,0

3
4,𝑥 +

3
4,

1
2

𝑥 +
3
4,

1
2,

1
4 𝑥 +

1
4,0,

1
4 0,

1
4, 𝑥 +

1
4,

1
2, 

1
4, 𝑥 +

3
4

𝑥,0,
3
4 𝑥 +

1
2,0,

1
4

3
4,𝑥,0,

1
4,𝑥 +

1
2,0

0,
3
4,𝑥 0, 

1
4,𝑥 +

1
2

1
4,𝑥 +

3
4, 0

1
4,𝑥 +

1
4,

1
2

48f 2..

𝑥 +
1
4,

1
2,

3
4 𝑥 +

3
4,0,

3
4 0,

3
4, 𝑥 +

3
4

1
2,

3
4,𝑥 +

1
4



𝑥,𝑥,𝑥 𝑥 +
1
2,𝑥,𝑥 +

1
2 𝑥,𝑥 +

1
2, 𝑥 +

1
2 𝑥 +

1
2, 𝑥 +

1
2, 𝑥

𝑥 +
3
4,𝑥 +

1
4,𝑥 +

1
4 𝑥 +

3
4,𝑥 +

3
4,𝑥 +

3
4 𝑥 +

1
4,𝑥 +

1
4,𝑥 +

3
4 𝑥 +

1
4,𝑥 +

3
4, 𝑥 +

1
4

𝑥,𝑥,𝑥 𝑥 +
1
2,𝑥,𝑥 +

1
2 𝑥,𝑥 +

1
2, 𝑥 +

1
2 𝑥 +

1
2, 𝑥 +

1
2, 𝑥

32e .3.

𝑥 +
1
4,𝑥 +

3
4,𝑥 +

3
4 𝑥 +

1
4,𝑥 +

1
4,𝑥 +

1
4 𝑥 +

3
4,𝑥 +

3
4,𝑥 +

1
4 𝑥 +

3
4,𝑥 +

1
4,𝑥 +

3
4

3
8,0, 

1
4

1
8,0, 

3
4

1
4, 

3
8,0

3
4, 

1
8,0 0, 

1
4, 

3
8 0, 

3
4, 

1
824d 4.. 3

4, 
5
8, 0

3
4, 

3
8, 

1
2

1
8, 

1
2, 

1
4

7
8, 0, 

1
4 0, 

1
4, 

7
8

1
2, 

1
4, 

1
8

1
8,0, 

1
4

3
8,0, 

3
4

1
4, 

1
8,0

3
4, 

3
8,0 0, 

1
4, 

1
8 0, 

3
4, 

3
824e 2.2 2 7

8, 0, 
3
4

5
8, 0, 

1
4

3
4, 

7
8, 0

1
4, 

5
8, 0 0, 

3
4, 

7
8 0, 

1
4, 

5
8

16b .32
1
8, 

1
8, 

1
8

3
8, 

7
8, 

5
8

7
8, 

5
8, 

3
8

5
8, 

3
8, 

7
8

7
8, 

7
8, 

7
8

5
8, 

1
8, 

3
8

1
8, 

3
8, 

5
8

3
8, 

5
8, 

1
8

16a .3. 0, 0, 0
1
2,0, 

1
2 0, 

1
2, 

1
2

1
2, 

1
2,0

3
4, 

1
4, 

1
4

3
4, 

3
4, 

3
4

1
4, 

1
4, 

3
4

1
4, 

3
4, 

1
4

5. MINIMAL BAND CONNECTIVITY FOR THE MSG 142.567

In this appendix we show that the minimal band connectivity M for the MSG 142.567 
satisfies M ≥ 4, which prohibits a common band gap throughout the Brillouin zone between the 
bands 2 and 3. We focus on the eigenvalues of the twofold rotation 𝐶2𝑧 = {2001|0 1

2
0} along 

the high symmetry line W (π/a, π/a, kz), which connects the two points X (π/a, π/a, 0) and P 
(π/a, π/a, π/a). Along this W line, the twofold rotation is preserved and its eigenvalues ±1 
remains constant, because the square of this rotation is +1. At the X point (π/a, π/a, 0), the 
twofold rotation anticommutes with the inversion, which means that the twofold rotation 
eigenvalue changes sign under the inversion. Thus, at the X point, twofold degeneracy is 
formed by two states, one with C2z = 1 and the other with C2z = −1. On the other hand, at the P 
point, all the eigenmodes are doubly degenerate with both sharing the same C2z eigenvalue (= ±
1). This can be directly shown by the local symmetries at the P point, T’≡ TGy and IC4z, with 
its details shown in the page 8 of the Supplementary Material of Ref. [11].

Let us recall that along the line W(π/a, π/a, kz), the C2z eigenvalues are preserved. At the X 
point one state with C2z = 1 and another state with C2z = −1 are degenerate, but it cannot be 
connected to the double degeneracy at the P point, formed by the same value of the C2z 
eigenvalues. Thus, in MSG 142.567, minimal connectivity M must be larger than two, and a 
band gap cannot open between the bands 2 and 3.
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