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Fig. S1: Noise performance of detector. (a) Spectrum of the detector output as the reference power increases 
from 0 mW to 2.2 mW. Spectral Density is in arbitrary units. The lowest spectrum includes no light and 
corresponds to the detector noise. Digitizer noise is far smaller and not visible on this plot scale. The addition 
of laser power should contribute spectrally flat shot noise, therefore the variations with frequency indicates 
variations in detection sensitivity across the measurement bandwidth. (b) Averaged spectral density below 1000 
MHz, showing a linear increase over the range 0 mW to 2.1 mW, after which the detectors begin to saturate. 
The constant offset is due to the electronic detector noise. The linear increase is the signature of shot noise, and 
confirms the detection to be limited by shot noise above 0.8 mW. The experiments used 1.6 mW of reference 
power, at which shot noise is more than double the electronic noise floor. 

 

 

Fig. S2: Quantification of noise due to stray light. Spectra were measured while varying amount of reflected 
light was inserted into the signal port of the microscope. Principal component analysis (PCA) was used on the 
resulting set of spectra to identify how the excess power influences the detection. (a) The first two principal 
components, which collectively account for 99.9 % of the variations in the measured spectra. This means that 
changes the in spectral shape due to stray light can be well approximated as a linear sum of the two principal 
component spectra. The first principal component (blue) approximately matches the variations in detection 
sensitivity across the measurement bandwidth (Fig. S1a), and the second component (orange) approximates a 
linear ramp over the detection bandwidth.  (b) The coefficients of each principal component, as a function of 
the excess power. The first principal component (blue) coefficient increases approximately linearly with the 
extra power, suggesting it is primarily caused by additional shot noise. The second component (orange) 
coefficient becomes increasingly variable with extra power, but no change in mean. This is consistent with 
excess laser noise, which can change in sign due to uncontrolled shifts in the phase between the reference and 
reflected light. These components provide excess background noise when imaging scattering samples, and the 
shot noise is subtracted from spectra when processing data. In pure liquids these components are not observable.  

 



 

Fig. S3: Precision of the heterodyne measurements of Brillouin scattering in water, with precision Δν defined 
as the standard deviation of Brillouin peak frequencies estimated from a sequence of measured spectra. (a) 
Change in precision with probe power, measured with 200 ms pixel dwell. The fit shows a Δ𝜈 ∝ 𝑃  
dependence on the power 𝑃. (b) Measured precision with differing dwell times, ranging from 2 ms to 400 ms, 
and measured with 345 mW. The fit follows Δ𝜈 ∝ 𝑇 /   with the averaging time 𝑇 . The dependence is 
predicted in Eq. (28). (c) Allan variance of series of measurements, recorded with pixel dwell times of 2 ms 
(blue), 5 ms (orange), and 10 ms (yellow). The Allan variance converges to 0.86 𝑇 /  for longer dwell times, 
with a slight reduction in precision for the shortest 2ms dwell. 

 

 

 

 

 

 

 
Fig. S4: Laser heating. (a) The Brillouin shift of water increases as the input laser power is increased, consistent 
with the expected change in Brillouin frequency as the temperature increases. Error bars denote the standard 
deviation of a sequence of measurements. The fit represents the expected Brillouin frequency shift if the rate 
of laser heating is held constant at 27.5 K/W. (b) The Brillouin shift in heavy water D2O is 240-300 MHz lower 
than in water. The change in Brillouin shift in heavy water with laser power is approximately 10 times smaller 
than in water, suggestive of less than 3 K/W heating. The residual heating in heavy water may be due to 
contamination with regular water. 

 

 



 

Fig. S5: Laser heating dynamics. (a) The Brillouin spectrum was measured in water with 338 mW laser power 
as the shutter was opened. Prior to recording the shutter is closed, so there is no laser power in the sample. The 
digital signal to open the shutter was sent at time = 0, and the spectrum measured with 1 ms dwell time for 200 
ms. To provide high sensitivity at such short time window, the measurement was repeated 500 times and the 
spectra averaged over the repetitions. No Brillouin signal is visible in the first 3 ms, consistent with the specified 
time it takes the shutter to respond. Once open, the Brillouin peak shows minimal variation in time. (b) The 
fitted peak frequency over time, which indicates the local temperature at the focus. Laser heating results in a 
total of 58 MHz shift at this power (see Fig. S4a). Even at the first measurable point (4 ms), the frequency is 
close to its final stable value, with 77% of the total heating induced shift already present. Heating appears to 
be fully complete within 100ms, with no further shifts due to heating after the shutter has been open for 100ms.  

 

 

 

Fig. S6: Measurement of a Brillouin spectrum over a wide frequency range by scanning of the reference 
frequency. (a) A heatmap of individual spectra, shown both above and below the modulation frequency on the 
reference field. Detection frequencies below 6.25 MHz are excluded due to excess noise. An averaged spectrum 
is constructed for each reference frequency which is the median of each measurement at that frequency. (b) For 
each reference frequency, the true spectrum is estimated both above and below the reference as the median of 
data at every other frequency. This is highlighted for the 3000 MHz reference frequency, where the true 
spectrum above the reference frequency is estimated as the median value of the measured data at the green 
bars. This is then subtracted from the spectral range below the reference frequency (black bar). A similar 
process is applied both above and below each reference frequency to remove all spurious spectral features from 
the measured data. (c) The full spectrum is then estimated as the median value for each of the processed spectra 
as shown in (b). 



 
Fig. S7: Fibrin hydrogel imaging and structural quantification for a sample prepared identically to the hydrogel 
shown in Fig. 3 of the main text. The fibrin hydrogel was polymerized at 37 °C using 4 mg/mL fibrinogen 
purified from pooled human plasma.  (a) 3D Confocal reflectance microscopy imaging (Ex: 576 nm) performed 
2 hours after the network formed. (b-e) Analysis of pore size and fiber diameter was performed as described in 
[1]. (b) Confocal images were then binarized. (c) The distance to the nearest fiber was estimated, and pores 
allocated to local maxima. (d) The distribution of pore sizes. (e) The mean and standard deviation of estimated 
pore size and fiber diameters.  

 

 
Fig. S8: Viability of HeLa cells after Brillouin image acquisition. (a) A brightfield image of the HeLa cell 
shown in Fig. 3 of the main text. (b) NucGreen live/dead stain (ThermoFisher) signal for the cell in (a) after 
acquisition of Brillouin images.  This is imaged using widefield epifluorescence with a GFP filter set. (c) and 
(d), representative positive controls, where cells have been chemically damaged by addition of ethanol to 
induce death after imaging. Due to sample movement when adding the ethanol, the cell shown in (a) was not 
located for imaging after chemical damage.    



Note 1: Experimental setup  

Probe field: 

The laser source is a low noise 1064 nm fiber laser with an output of up to 1 W (Azur Light ALS-IR-1064-1-I-SF-
C). The sample is illuminated by a probe field, which is switched on or off using a digitally controlled shutter 
(Thorlabs SHB025T). The focal spot is scanned in 2D using galvo mirrors (Thorlabs GVS012) that are mapped to 
the back-focal plane of the objective using an F-theta scan lens (Thorlabs FTH160-1064-M39) and a tube lens 
(Thorlabs TTL200-B) which are aligned for telecentric beam scanning. Most Brillouin microscopes have used stage 
scanning, which has the advantage of enabling higher collection efficiency of the scattered signal, however use of 
galvanometric scanners was chosen here as it allows the sample to be kept static, alleviating any mechanical 
interference caused by moving the sample. The microscope objective (Nikon CFI Apo 60×W NIR N.A. 1.0) is 
positioned in Z with around 100nm resolution using a motorized stage (Thorlabs ZFM2020). The objective is under-
filled at the back-focal plane to reduce its effective numerical aperture 

Signal field: 

Backscattered light is separated into the signal port using a quarter waveplate and a polarizing beamsplitter. Light 
which traverses the quarter waveplate twice, when travelling both forward and back again, experiences a half wave 
phase delay along the slow axis, which rotates linearly polarized light. The signal field is then collected into a single 
mode fiber with a collimation lens (Thorlabs F240APC-1064) that is confocally aligned with the laser focus. This 
signal field is then mixed with the reference field at a 50:50 splitter, with the resulting interference detected on a 
1000 MHz bandwidth detector (Thorlabs PDB481C).  

Reference field: 

The reference field is produced using an optical fiber-based amplitude modulator (iXblue NIR-MX-LN-10) with a 
bias input set for dual sideband and carrier suppression, which means maximizing power in the frequency shifted 
sidebands while minimizing power in the unmodulated laser frequency. We detect 400 nW of unmodulated light 
when the modulation is left off, which is 4000 times less than the 1.6mW reference power used in experiments. To 
modulate the light we use an RF source (Aim-TTi TGR6000), with the output amplified (iXblue DR-AN-10-MO) 
and passed through a 1700 MHz high pass filter (Minicircuits VHF-1320+) before inputting to the amplitude 
modulator. The high pass filter is necessary to remove excess noise and achieve shot noise limited performance. The 
amplifier has an analog input which provides fine control of the gain, which we use to control and actively stabilize 
the total reference power reaching the detector. The use of a frequency shifted reference allows the detection 
bandwidth to be shifted to any frequency in the Brillouin scattering spectrum, limited only by the achievable 
modulation frequency.  

Spectrum analysis: 

The detector output signal is passed through a 1000 MHz low pass filter (Minicircuits SLP-1200+) to eliminate any 
residual signal at the modulation frequency, and then converted to a digital power spectrum using a custom-built 
real-time spectrum analyser in a National Instruments PXI system. This spectrum analyzer consists of a 3.2 GS/s 
digitizer (NI PXIe-5775) with an onboard FPGA running custom written LabVIEW FPGA code that converts the 
input to power spectra using a Fast Fourier Transform (FFT), and averages data to a single spectrum for a user 
defined duration. This onboard preprocessing is necessary for the function of the microscope, as the raw data is 
acquired at a rate of 4.2 GB/s. The averaged spectrum is transferred to the host computer and streamed to disk using 
a LabVIEW program that also controls the microscope hardware via analog, digital and serial outputs. The system 
can acquire and stream data continuously, with pauses in the acquisition due to computational processing accounting 
for less than 1% the acquisition time.   

Table 1. Components in the PXI based spectrum analyzer 

Item NI Part 
number 

Description 

Chassis PXIe-1092 Supports high speed data transfer from the digitizer to the host PC 



Controller PXIe-8880 Host PC running Windows 10, where data is streamed to disk and 
analyzed 

Digitizer/FPGA PXIe-5775 FlexRIO Digitizer with 3.2 GS/s 12-bit, and KU040 FPGA where 
spectrum analysis is performed 

Data Acquisition 
Card 

PXIe-6363 X Series DAQ (32 AI, 48 DIO, 4 AO), used to control the galvo 
scanners and other microscope parts 

Parameter estimation: 

The Brillouin shift ν and linewidth Γ were estimated for each measured spectrum using a custom script in Matlab 
2019.  

At the start of each measurement a baseline was recorded with the shutter closed to block the probe field. The first 
step in processing the measured spectra was to subtract the baseline from it. Then the level of excess shot noise from 
stray light was estimated and subtracted off for each measured spectrum. The remaining spectral values typically 
included only the Brillouin scattering peak, though in some instances residual noise would remain. The Brillouin 
peak would be estimated by least squares curve fitting a Lorentzian curve to the data. To minimize the effects of 
residual noise the fitting range would exclude detection frequencies with high noise, which were typically those 
below 100 MHz, and above 1000 MHz which falls outside the specifications of the detector.  

 
Note 2: Shot noise limit 

The shot noise limit to heterodyne detection is well established (e.g. see [2, 3]), and is reproduced here for the case 
with amplitude modulated reference field and unwanted background. The heterodyne measurement combines 
reference 𝐸  and signal 𝐸  fields on a 50/50 splitter, with two outputs; 𝐸 = 2 𝐸 + 2 𝐸 (1) 

𝐸 = 2 𝐸 − 2 𝐸 (2) 

In practice the signal field includes background scattering 𝐸  from the sample. To simplify we separate the mean 
and fluctuations of the fields as  𝐸 = 𝐸 𝑒 ( ) + 𝑒 ( ) + 𝛿𝐸 (3) 𝐸 = 𝐸 𝑒 ( ) + 𝑒 ( ) + 𝐸 + 𝛿𝐸 (4) 

Here 𝜔  is the optical frequency, Ω the modulation frequency, ω  the Brillouin scattering frequency, 𝐸  the 
background scatter from the sample, and 𝐸  and 𝐸  are the average reference and signal amplitudes which we set to 
be real without loss of generality. We consider the reference to be bright and fluctuations small, so that 𝐸 ≫𝐸 , 𝛿𝐸 , 𝛿𝐸 . The resulting subtraction photocurrent is given as 𝑖 = |𝐸 | − |𝐸 | ≈ 2𝐸 𝐸 cos(Ω − ω )𝑡 + 2𝐸 𝑅𝑒{𝐸 } + 2𝐸 𝑅𝑒{𝛿𝐸 } + 2𝑅𝑒{𝐸 𝛿𝐸 } (5) 

Here the small terms 𝐸 𝛿𝐸  and 𝛿𝐸 𝛿𝐸  have been neglected. The Brillouin signal is detected at the frequency ω =|Ω − ω |, and as such it is ambiguous whether the Brillouin frequency corresponds to ω = Ω − 𝜔 or ω = Ω +𝜔. This ambiguity can be resolved by scanning the modulation Ω (as shown in Fig. S6). 

To estimate the signal, we extract the photocurrent at frequency ω = |Ω − ω |, which provides: 𝑖(𝜔) = 𝐸 𝐸 + 𝐸 𝜉 + 𝐸 𝜉 (6) 

Here we have defined 𝜉  = 𝑅𝑒{𝛿𝐸 (𝜔)}, 𝜉  = 𝑅𝑒{𝛿𝐸 (𝜔)}, which at the shot noise limit have the properties 〈𝜉〉 = 0, and 〈𝜉 〉 = 1. The fixed variance corresponds to zero point fluctuations of the electromagnetic field [3]. An 
estimate of 𝑖(𝜔) then has variance of Δ𝑖 (𝜔) = 〈𝑖 (𝜔)〉 − 〈𝑖(𝜔)〉 , with 



〈𝑖 (𝜔)〉 = 𝑛 𝑛 + 𝑛 〈𝜉 〉 + 𝑛 〈𝜉 〉 (7) 〈𝑖(𝜔)〉  = 𝑛 𝑛 (8) 

Here 𝑛 = 𝐸 , 𝑛 = 𝐸 , and 𝑛 = 𝐸  are mean photon numbers in the reference, signal, and background fields 
respectively. At the shot noise limit we find the signal to noise ratio (SNR) of an estimate of 𝑖(𝜔) is given by  

SNR = 〈𝑖(𝜔)〉 Δ𝑖 (𝜔) = 𝑛 𝑛𝑛 + 𝑛 ≈ 𝑛 (9) 

The approximation is valid provided 𝑛 ≫ 𝑛 , as is typically true. This SNR is the most commonly considered shot 
noise limit. The Brillouin peak, however, is estimated based on spectral power, which we define as  𝑆 = 𝑖(𝜔) = 𝑛 𝑛 + 𝑛 𝜉 + 𝑛 𝜉 + 2𝑛 𝐸 𝜉 + 2𝐸 𝐸 𝐸 𝜉 + 2𝐸 𝐸 𝜉 𝜉 (10) 〈𝑆〉 = 𝑛 𝑛 + 𝑛 〈𝜉 〉 + 𝑛 〈𝜉 〉 + 2𝑛 𝑛 〈𝜉 〉 + 2𝑛 𝑛 𝑛 〈𝜉 〉 + 2𝑛 𝑛 〈𝜉 〉〈𝜉 〉 (11) 〈𝑆 〉 = 𝑛 𝑛 + 𝑛 〈𝜉 〉 + 𝑛 〈𝜉 〉 + 6𝑛 𝑛 〈𝜉 〉 + 6𝑛 𝑛 𝑛 〈𝜉 〉 + 6𝑛 𝑛 〈𝜉 〉〈𝜉 〉 (12) 

Here we have used 〈𝜉〉 = 〈𝜉 〉 = 0. This leads to  Δ 𝑆 = 𝑛 (〈𝜉 〉 − 〈𝜉 〉 ) + 𝑛 (〈𝜉 〉 − 〈𝜉 〉 ) + 4𝑛 𝑛 〈𝜉 〉 + 4𝑛 𝑛 𝑛 〈𝜉 〉 + 4𝑛 𝑛 〈𝜉 〉〈𝜉 〉 (13) 

Since 𝜉 is a Gaussian variable, (〈𝜉 〉 − 〈𝜉 〉 ) = 2〈𝜉 〉 = 2, and  Δ 𝑆 = 2𝑛 + 2𝑛 + 4𝑛 𝑛 + 4𝑛 𝑛 𝑛 + 4𝑛 𝑛 (14) 

As such the shot noise limit for an estimate of spectral power is given as 

 SNR = 〈𝑆 − 𝑛 − 𝑛 〉 Δ𝑆 = 𝑛 𝑛2𝑛 + 2𝑛 + 4𝑛 𝑛 + 4𝑛 𝑛 𝑛 + 4𝑛 𝑛 ≈ 𝑛4𝑛 + 2 (15) 

Here the constant shot noise floor 𝑛 + 𝑛  is subtracted from 𝑆 as it is independent of the signal spectrum we aim to 
measure. The final approximation uses 𝑛 ≫ 𝑛 , 𝑛 , and is valid for the experimental conditions. Experiments use 
1.6mW of detected reference power, so detection of 20μW of background, for instance, corresponds to 𝑛 ≈0.0125 𝑛 , which increases the noise by a factor of 1.025, and reduces the SNR by a factor of 0.976. For the current 
experiments, this can be considered negligible. This SNR asymptotes to photon counting performance at large 
photon number, but incurs a constant noise penalty that is deleterious for 𝑛 ≪ 1. 

 

Note 3: Cramér–Rao bound on Brillouin frequency estimation  

The Cramér–Rao bound establishes the limit to estimation of a parameter with stochastic data, limited by the Fisher 
Information [4] which for estimation of a single parameter is defined as  

𝐼(𝜃) =  𝜕𝜕𝜃 log 𝑃(𝑋; 𝜃) 𝑃(𝑋; 𝜃) 𝑑𝑥 (16) 

Here 𝑃 is the probability density of the measurement outcome 𝑋 given the true value of the parameter 𝜃 to be 
estimated. Here I am considering the measured parameter 𝑋 to be spectral power at each frequency. Because the 
spectra are heavily averaged, the probability distribution is very well approximated as a normal distribution, with 
probability at each frequency component given by 

𝑃 (𝑋) =  1√2𝜋  𝜎  𝑒 ( ) (17) 

To find information for any parameter 𝜃, note the following 



𝜕𝜕𝜃 log 𝑃 (𝑋; 𝜃) = 𝜕𝑋𝜕𝜃 𝜕𝜕𝑋 log 𝑃 = 𝜕𝑋𝜕𝜃 𝑋 − 𝑋𝜎 (18) 

Using Eq. (18) and Eq. (16) 

𝐼(𝜃) = 𝜕𝑋𝜕𝜃 1√2𝜋  𝜎 𝑋 − 𝑋𝜎 𝑒 ( )  𝑑𝑋  

= 𝜕𝑋𝜕𝜃 1√2𝜋  𝜎 𝑋𝜎 𝑒 ( )  𝑑𝑋 = 𝜕𝑋𝜕𝜃 𝜎 . (19) 

This provides the unsurprising conclusion that estimation has a minimum uncertainty of 

Δ𝜃 ≥ 𝜎/ 𝜕𝑋𝜕𝜃 . (20) 

Here we estimate a Brillouin scattering spectral peak, with 𝑋 = 𝑆(𝜔) − 𝑛  representing the measured spectral 
power, 𝑋 = 𝑛 𝑛 (𝜔) the true average spectrum, and as discussed above 𝜎 = 𝑛 (4𝑛 (𝜔) + 2). Here we consider a 
resonant peak with a signal spectrum of 𝑛 (𝜔) = 𝑛 Δ𝜔𝛾/𝜋𝛾 + (𝜔 − 𝜔 ) (21) 

Here 𝑛  is the total photon number in the peak, and Δ𝜔 is the increment between frequencies in the Fourier 
transform. The photon number is normalized using the approximation 𝑛 = 𝑛 (𝜔) ≈ 1Δ𝜔 𝑛 (𝜔) 𝑑𝜔 (22) 

This is valid provided the frequency increment is much smaller than the spectral linewidth 𝛾. The duration of each 
individual measurement defines , with longer duration measurements increasing the number of frequencies 
represented in the Fourier domain and thereby the photon number, though 𝑆𝑁𝑅 is unchanged at each individual 
frequency. When estimating the peak frequency, we substitute 𝜃 = 𝜔  into Eq. (19), which requires the following 
function 𝜕𝑋𝜕𝜔 = 2𝑛 Δ𝜔 𝛾 𝑛  (𝜔 − 𝜔 )𝜋(𝛾 + (𝜔 − 𝜔 ) ) (23) 

To estimate the central frequency of the peak we add together the information derived from all the different 
measured frequencies.  

𝐼(𝜔 ) =  𝐼 = 𝜕𝑋(𝜔)𝜕𝜔 𝜎  ≈ 1Δ𝜔 𝜕𝑋(𝜔)𝜕𝜔 𝜎  𝑑𝜔 (24) 

The replacement of the finite sum with an integral is valid provided the bandwidth of the measurement is large 
enough to encompass all the available information. The equation is difficult to solve using the exact measurement 
variance from Eq. (14), 𝜎 = 𝑛 (4𝑛 (𝜔) + 2). However it is easily solvable in the limits of high photon number 𝑛 (𝜔) ≫ 1 and low photon number 𝑛 (𝜔) ≪ 1. In the limit of large photon number, we have 𝜎 ≈ 4𝑛 𝑛 (𝜔) and 
the Fisher information is 

𝐼(𝜔 ) = 1Δ𝜔 2 𝑛 Δ𝜔 𝛾 𝑛  (𝜔 − 𝜔 )𝜋(𝛾 + (𝜔 − 𝜔 ) )  𝛾 + (𝜔 − 𝜔 )4𝑛  𝑛 Δ𝜔 𝛾/𝜋 𝑑𝜔 



= 𝑛  𝛾π 𝜔(𝛾 + 𝜔 ) 𝑑𝜔 = 𝑛8 𝛾 (25) 

As such the minimum resolvable frequency shift is 

Δ𝜔 ≥ 8 𝛾 𝑛 (26) 

This is similar to the sensitivity achievable with photon counting detectors (derived below). In the limit of small 
photon number, we have 𝜎 ≈ 2𝑛  and the Fisher information is instead given by 

𝐼(𝜔 ) = 1Δ𝜔 2 𝑛 Δ𝜔 𝛾 𝑛  (𝜔 − 𝜔 )𝜋(𝛾 + (𝜔 − 𝜔 ) )  1 2 𝑛  𝑑𝜔 = Δ𝜔 𝑛4𝜋 𝛾 (27) 

Such that the minimum resolvable frequency shift is 

Δ𝜔 ≥ 4𝜋𝛾Δ𝜔 𝑛 = 2𝛾𝑃 𝑇 (28) 

With 𝑃  the total signal photon flux/second, and 𝑇 the total averaging time. The second expression has some 
practical value; it is equally applicable both to increased measurement duration via longer acquisition, which leads 
to narrower bandwidth narrower bandwidth Δ𝜔, and when averaging many measurements. In both cases the increase 
in total duration provides the same linear decrease in noise variance. At fixed total averaging time 𝑇, changing the 
frequency resolution Δ𝜔 has no effect on the precision. The dependence of Δ𝜔 ∝ 𝑃  and Δ𝜔 ∝ 𝑇 /  are shown 
experimentally in Fig S3. 

When compared to the expression at high photon number, we see that this uncertainty is larger by a factor of = , where 𝑛  is the mean number of signal photons collected in the scattering coherence time of 𝜏 = 1/𝛾. 
This shows that the noise penalty in heterodyne is relevant when fewer than 1 photon is collected within the 
coherence time. 

To provide a more experimentally applicable expression, we can parametrize the achievable precision in terms of the 
peak signal-to-noise ratio (SNR ), defined as the squared amplitude of the Brillouin peak 𝑆(𝜔 )  divided by the 
background spectrum variance  𝜎 ≈ 2𝑛 . Using Eq. (15) and Eq. (21), the SNR  can be expressed as a function of 
photon numbers as  

SNR ≈ 𝑛 (𝜔 )2 = 𝑛 Δ𝜔2𝜋 𝛾 (29) 

Using this in Eq. (28), we find Δ𝜔 ≥ 2𝛾Δ𝜔π SNR (30) 

 

Photon counting Cramér–Rao bound 

Here we perform a similar analysis of the Cramér–Rao bound to the case of a spectrometer using photon counting. 
In this case the measured parameter 𝑋 a photon number at each frequency, which must be discreet number. Photon 
numbers follow a Poisson distribution: 

𝑃 (𝑋; 𝜇) =  𝜇 𝑒𝑋!  (31) 

Here 𝜇 is the mean photon number. The Fisher information is given by 



𝐼(𝜃) = 𝜕𝜇𝜕𝜃 𝐸  𝜕𝜕𝜇 log 𝑃  = 𝜕𝜇𝜕𝜃 1𝜇 (32) 

Where 𝐸[  ] denotes the expectation value. Comparing Eq. (32) to the equivalent Eq. (19) derived for Gaussian 
statistics, we see that here 𝜎  has been replaced with 𝜇. This is unsurprising given that the distribution variance is 
equal to 𝜇. Similar to the above, we use 𝜇(𝜔) = 𝑛 Δ𝜔𝛾/ 𝜋𝛾 + (𝜔 − 𝜔 ) (33) 𝜕𝜇𝜕𝜔 = 2 𝑛 Δ𝜔 𝛾 (𝜔 − 𝜔 )𝜋(𝛾 + (𝜔 − 𝜔 ) ) (34) 

To estimate change in central frequency we again add together the information derived from all the measured 
frequencies.  𝐼(𝜔 ) = 𝜇  𝑑𝜔 =   ( ( ) ) 𝑑𝜔 =  (35)  

Hence, we find that the Poissonian statistics achieve slightly higher precision than Eq. (26) for heterodyne at high 
signal power  

Δ𝜔 ≥ 2 𝛾 𝑛 (36) 

 
 

Note 4: Calibration materials 

Figure 2 of the main text shows Brillouin spectra measured for methanol, ethanol, isopropanol, acetone and water, 
with measured Brillouin shifts compared to expected values. In each case the expected Brillouin frequency was 
calculated as  𝜈 = 2𝑐𝑛𝜆 (37) 

Here 𝑛 is the refractive index, 𝑐  the speed of sound in the liquid, and 𝜆 the vacuum wavelength. The speed of sound 
for each liquid was taken from the Dortmund Data Bank [5], and the refractive index from the Refractive index 
database [6]. As shown above in Fig. S4, the laser can induce sample heating. The amount of heating will depends 
on both the thermal conductivity and the optical absorption of the materials [7]. We were unable to find this 
information for all materials, and so assumed a similar temperature to water, instead of attempting to infer the 
different rates of heating with insufficient information. All measurements were taken at room temperature (22 °C) 
with the laser heating assumed to be approximately 8K, such that the assumed temperature was 303.15K (30 °C). 
The measured and expected shifts closely align, with some small deviations. The deviations could be due to 
differences in temperature from the assumed value.  

The Brillouin linewidth was also measured and shown to correlate approximately with the kinematic viscosity, 
which is a rheological parameter measured at low frequencies (Fig. 2d). We did not predict the expected Brillouin 
linewidth as it depends on both the shear (kinematic) and bulk viscosities, as well as the heat transport coefficient 
[8]. We were unable to find values for the bulk viscosities for all of the materials. We instead plot the Brillouin 
linewidth against the kinematic viscosity at the assumed temperature of 303.15K [9]. The kinematic viscosity 
contributes to the broadening of the Brillouin linewidth, and hence we expected the trend of increasing Brillouin 
linewidth at increasing kinematic viscosity (Fig. 2d). While this is suggestive that the Brillouin linewidth increases 



with increasing kinematic viscosity, this is only a general trend, and it is not generally possible to estimate kinematic 
viscosity from Brillouin linewidth because of the additional contribution of bulk viscosity. 

 

References 
1. M. Molteni, D. Magatti, B. Cardinali, M. Rocco, and F. Ferri, "Fast Two-Dimensional Bubble Analysis of Biopolymer Filamentous 

Networks Pore Size from Confocal Microscopy Thin Data Stacks," Biophysical Journal 104, 1160-1169 (2013). 
2. H. P. Yuen and V. W. Chan, "Noise in homodyne and heterodyne detection," Opt. Lett. 8, 177-179 (1983). 
3. W. P. Bowen and G. J. Milburn, Quantum optomechanics (CRC Press, 2015). 
4. A. Van den Bos, Parameter estimation for scientists and engineers (John Wiley & Sons, 2007). 
5. "Dortmund Data Bank (DDB), DDBST GmbH ", retrieved 08/2021, http://www.ddbst.com/. 
6. "Refractive index database", retrieved 08/2021, https://refractiveindex.info/. 
7. E. J. Peterman, F. Gittes, and C. F. Schmidt, "Laser-induced heating in optical traps," Biophys. J. 84, 1308-1316 (2003). 
8. J. Rouch, C. Lai, and S. Chen, "Brillouin scattering studies of normal and supercooled water," J. Chem. Phys. 65, 4016-4021 (1976). 
9. D. S. Viswanath, T. K. Ghosh, D. H. Prasad, N. V. Dutt, and K. Y. Rani, Viscosity of liquids: theory, estimation, experiment, and data 

(Springer Science & Business Media, 2007). 

 


