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document
We theoretically explore cooperative effects of equally spaced multiemitters in a 1D dense array
driven by a low-intensity probe field propagating through a 1D waveguide by modeling the
emitters as point-like coupled electric dipoles. We calculate the collective optical spectra of a
number of 1D emitter arrays with any radiation-retention coefficient η using both exact classical-
electrodynamics and mean-field-theory formalisms. We illustrate cooperative effects of lossless
1D emitter arrays with η = 1 at the emitter spacings, which are displayed by steep edges
accompanied by a deep minimum and Fano resonances in the plots of transmissivities as a
function of the detuning of the incident light from the emitter resonance. Numerical simulation
of the full width of such optical bandgaps reveals that cooperativity between emitters is greater
in a small array of size N ≤ 8 than in a larger one of size N > 8. For a lossy 1D emitter array in
which the radiation retention coefficient is equal to or less than 0.1 the transmissivity obtained by
exact-electrodynamics scheme exhibits no bandgap structures, being in good agreement with the
mean-field-theory result. We propose that a 1D multiemitter array may work as a nanoscale filter
blocking transmission of light with a frequency in the range of optical bandgaps.

1. MODEL

We consider a 1D dense array of N effective two-level emitters spaced by the equal distances
a(≤ λ), residing at fixed positions xn(n = 1, · · · , N), and driven a linearly polarized plane-wave
probe field propagating through a 1D waveguide, as depicted in Fig. S1. Note the emitters are
confined inside the 1D waveguide by the characteristic radial length scale denoted by ξρ in Fig. S1,
depicting a different system from Fig. 1. With this additional figure, we emphasize that emitters
can be side coupled to the 1D waveguide. In fact, we had intended to demonstrate a sample
coupled to a 1D photonic crystal waveguide [1], so called alligator. However, because of our
lack of drawing skill, we have illustrate electric dipoles of emitters within a cylinder-shaped
waveguide. In the limit of low light intensity the saturation of the excited state is neglected,
leading to the linear regime of classical optics. There are two modes for transmission of light
in the emitters. One is the usual dipolar radiation in a 3D free space. Scattered electric field
from dipoles in 3D free space has been presented in [2, 3] along with the analytical expression of
the steady-state electric dipole moment. We also consider the collective emission model where
emitters interact through both the guided modes of the coupled 1D waveguide and 3D free-
space electromagnetic field modes. We then formulate a consistent model for an 1D array of
tightly confined emitters, allowing for simultaneous 1D and 3D channels for light. The collective
dynamics for the optical response of the 1D multiemitter array can be described by a classical
electrodynamics scheme as well as by a quantum-mechanical one.

2. TIME EVOLUTION OF EXCITATION AMPLITUDE

We here aim to derive Eq. (2) in the primary manuscript. Additionally, we validate a key idea that
in the low-light-intensity limit the collective dynamics of effective two-level emitters, described
in the quantum-mechanics framework, can be reduced to the classical electrodynamics equations
of point-like electric dipoles.

A. One-dimensional (1D) classical electrodynamics scheme
We model the 1D channel along the lines of a 1D scalar classical electrodynamics in [4] and a
more detailed analysis of the 1D light propagation in [5]. For the dynamics of dipoles we express
the polarization density of emitters, which is induced by an electric field of external light driving



Fig. S1. A 1D array of emitters within a 1D waveguide is illustrated for the case of N = 8
emitters at the positions xn(n = 1, ..., 8) separated by the equal spacing of a ≤ λ. Incident
plane-wave probe beam with the linear polarization in the y direction propagates along the
axis of the waveguide, the x direction. Emitter driven by the sum of the incident plane-wave
probe beam and scattered light by the other seven emitters radiates light with rates γw into the
1D waveguide and γl into the free space. Light transmits through the 1D waveguide, inducing
the identical electric dipole moments on each of the emitters in the y direction.

emitter transitions, in terms of the slowly-varying positive-frequency component without e−iωt,

P(x, t) =
N

∑
n=1

δ(x− xn)dn(t). (S1)

Here dn(t) denotes the electric dipole moment of the emitter at fixed position xn with fixed
orientation in the y direction at time t, being abbreviation of d(xn, t). For an effective two-level
emitter in a J = 0 to J′ = 1 transition in the absence of a magnetic field a single excited state is
selected. Then the dynamics of the electric dipole moments can be represented as

dn(t) = DPn(t)êy, (S2)

where D and Pn denote the dipole transition matrix element and the excitation amplitude of
the emitter n, respectively. If time scale of the emitter dynamics is much longer than that for
light propagation in a 1D waveguide, the polarization given in Eq. (S1) generates the dipolar
electric field ES(xn) at the position xn, scattered from all of N − 1 emitters [6]. In terms of the
monochromatic dipole field propagator G an electric field at the position xn from a single dipole
at xl [7] reads as

ES(xn) = G(xn − xl)dl . (S3)

All of electric dipoles in the 1D array send off electric fields, producing the dipolar electric field at
the position x

ES(x) =
N

∑
n=1

G(x− xn)dn (S4)

summed over all dipoles. Excluding self field on an emitter by itself, an electric field of external
light driving emitter transitions at the position xn equals the sum of the electric field of the
incoming plane-wave probe field of the form

Einc(x) = E0êy exp (ikx) (S5)
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and the scattered field, and expressed as

Eext(xn) = Einc(xn) +
N

∑
l 6=n

ES(xl). (S6)

After plugging the expression of a single electric dipole moment given in Eq. (S2) into Eq. (S1)
describing the sample dynamics for the polarization density, we obtain below the time evolution
of the excitation amplitude:

dPn

dt
= (i∆− γ)Pn + i

ξ

D êy · ε0Eext(xn). (S7)

Here, ∆ = ω − ω0 is the detuning between the incident probe field frequency and the single-
emitter resonance frequency, γ the linewidth of the optical transition, and we define

ξ =
6πγl

k3 (S8)

for the 3D linewidth of the optical transition

γl =
D2k3

6πh̄ε0
. (S9)

The 3D linewidth γl is the radiative linewidth of a single emitter, caused by a spontaneous
emission into 3D channel of light, leading to loss of light radiated by the emitter into 3D free
space. Inserting Eq. (S6) with the local dipolar field ES(xl) replaced into the second term in the
right-hand side of Eq. (S7) and substituting ξ = D2/h̄ε0, the second term becomes

i
D2

h̄ε0D

[
ε0Einc(xn) · êy +D

N

∑
l 6=n

G(xn − xl)Pl

]
= iκ0(xn) + i

D2

h̄ε0

N

∑
l 6=n

G(xn − xl)Pl . (S10)

Here the definition of Rabi frequency κ0(xn) given in the primary manuscript is used. Eq. (S10)
indicates the excitation-amplitude dependence of the scattered dipolar electric field at the position
of the emitter n. Monochromatic dipole field propagator through the 1D channel of light with an
effective area A = πξ2

ρ for the effective length between an emitter and the center of the waveguide
is

G(xn − xl) = i
k

2ε0 A
exp (ik|xn − xl |) = i

k
2πε0ξ2

ρ
exp (ik|xn − xl |), (S11)

corresponding to a Green’s function for the 1D Helmholtz equation [7]. Assuming a source has
electric dipole moment per unit area, we obtain Eq. (S11) by integrating away the transverse
components from the 3D Green’s function. We mdike an assumption that the wave number of
light inside the 1D channel k is the same as that in the 3D channel. Plugging G(xn − xl) into Eq.
(S10), the time evolution of the excitation amplitude of emitter at position xn is obtained below:

dPn

dt
= (i∆− γ)Pn + iκ0(xn)− γw

N

∑
l 6=n

exp (ik|xn − xl |)Pl , (S12)

where the single-emitter emission rate into the 1D waveguide γw is defined as

γw =
D2k

2πh̄ε0ξ2
ρ

. (S13)

In an ideal 1D waveguide, where all of the light emitted by the emitters are retained, the linewidth
of the optical transition γ would originate from spontaneous emission into the 1D waveguide
so that γ = γw. On the other hand, in a lossy 1D waveguide, a spontaneous emission into 3D
free space should be added. Thus the linewidth of the optical transition of a single emitter is
identified as the sum of the 1D and 3D linewidths, leading to the expression

γ = γw + γl. (S14)
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In the collective emission model under consideration, 1D waveguide-mode mediated interaction
of emitters and coupling to 3D free-space electromagnetic field modes are taken into account with
the radiation retention coefficient η defined as

η =
γw

γ
=

γw

γw + γl
. (S15)

Equation (S12) with γw = ηγ substituted is identical with Eq. (2) in the primary manuscript. The
identical equation with this has been presented for a 1D array of neutral atoms coupled to a 1D
waveguide [8] and for regularly arrayed cold atoms in a planar optical lattice in a free space [6].

B. Quantum-mechanical scheme
The electric dipole matrix element d of an effective two-level emitter is represented by d = Dêy.
With ground |g〉n and excited |e〉n states of emitter n, the emitter lowering and raising operators
are σ̂−n = |g〉nn〈e| and σ̂+

n = |e〉nn〈g|, respectively. In the limit of low probe light intensity,
with a Gutzwiller mean-field and a rotating-wave approximations, the time evolution of the
emitter coherences can obtained. The Gutzwiller mean-field approximation facilitates analysis of
collective dynamics by the factorization of internal level correlations〈

σ̂α
n σ̂

β
l

〉
≈ 〈σ̂α

n 〉
〈

σ̂
β
l

〉
, l 6= n. (S16)

Emitters in our model reside at fixed positions without spatial fluctuations thus do not have
correlations between the emitters after applying this approximation. In the interaction picture
collective dynamics is then described by quantum master equation for the reduced density matrix
ρ:

dρ

dt
= − i

h̄

N

∑
n=1

[Hn, ρ] + i
N

∑
n,l(n 6=l)

Ωnl
[
σ̂+

n σ̂−l , ρ
]
+

N

∑
nl

γnl
(
2σ̂−n ρσ̂+

l − σ̂+
l σ̂−n ρ− ρσ̂+

l σ̂−n
)

. (S17)

Here the Hamiltonian for emitter n reads

Hn = −h̄∆σ̂ee
n − ih̄γσ̂ee

n − d · Einc(xn)σ̂
+
n − d∗ · Einc(xn)σ̂

−
n (S18)

for σ̂ee
n = σ̂+

n σ̂−n . Collective interaction of emitters with light has a frequency shift Ωnl and a decay
rate γnl , which are respectively expressed as

Ωnl =
1

h̄ε0
Re [d∗ · G(xn − xl)d] (S19)

and
γnl =

1
h̄ε0

Im [d∗ · G(xn − xl)d] . (S20)

In the limit of low light intensity Eq. (S16) keeps terms having at most one of either σ̂±n or the
incident probe field amplitude. Taking the expectation values of density operators from Eq. (S17),

the equations of motion is reduced to the time evolution of the coherence ρ
(n)
ge of the emitter n as

follows:
dρ

(n)
ge

dt
= (i∆− γ)ρ

(n)
ge + iκ0(xn)− γw

N

∑
l 6=n

exp (ik|xn − xl |)ρ
(n)
ge . (S21)

Thus the collective dynamics of emitters is reduced to that of classical coupled dipoles.
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