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1. TRUNCATING THE REFRACTIVE INDEX MAP

Generally, the mapping function for mapping a half-plane to a
polygon with m corners can be written as [1]

f (u) = C1 + C2

u∫
u0

m

∏
i=1

(ũ− ui)
ϕi/π−1 dũ ,

where ϕi denotes the angle enclosed by the ithcorner of the
polygon and C1 and C2 are complex constants. For our applica-
tion, we choose a polygon with three corners vi. While corners
v1 and v2 are finite, the third corner lies at infinity. The com-
plex constants C1 and C2 are chosen such that the prevertices
u1 and u2 are mapped to the two finite polygon corners, i.e.,
v1 = f (u1) and v2 = f (u2). The prevertices are bound to be real,
i.e., Im(u1) = Im(u2) = 0. Further restrictions apply for the
polygon corners, namely Im(v1) = 0 and Im(v2) = R1. From
the mapping function f (u) we can derive the refractive index
distribution,

n(u) = n0

∣∣∣∣d f
du

∣∣∣∣−1
= n0

∣∣∣∣∣ m

∏
i=1

(u− ui)
1−ϕi/π

∣∣∣∣∣ , (S1)

where n0 denotes the refractive index of the untransformed
space. Thus, a total of five real parameters has to be chosen to
obtain the refractive index distribution. We pick the parameter
set

n0 = 1.5 ,

u1 = Re(v1) = −1.5R1 ,

u2 = Re(v2) = 0 ,

resulting in a refractive index distribution centered around
n ≈ 1.3 (see Figure 1(b) in the main text).
We spatially crop the refractive index distribution to a finite re-
gion, A. The edges of A are chosen to have a minimal distance
of 5R1 to either of the polygon vertices, v1 and v2 (see Figure S1).
Like this, high refractive index gradients are constrained to the
center of the refractive index distribution. We have furthermore
optimized Re(v1) such that the refractive index gradient inte-
grated along the right edge of A is minimal. This means that
there is a relatively constant refractive index at the interface be-
tween graded-index region and solar cell substrate. To end up
with the refractive index distribution depicted in Figure 1(b) of
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Fig. S1. Illustration of the polygon chosen for the Schwarz-
Christoffel transformation. While the polygon corners v1 and
v2 are finite, v3 is set to infinity. We crop the spatially infinitely
extended resulting refractive index map to a finite region, A
(dashed line). The complete index distribution (Figure 1(b) of
the main text) is obtained by rotating the cropped region by
−90° and mirroring it to the left.

the main text, we rotate the spatially cropped refractive index
by −90° and mirror it to the left.
Obviously, the refractive index distribution as derived from the
mapping function exhibits singularities at u = ui (see Equa-
tion (S1)). While for positive exponents the refractive index
becomes zero, it diverges in the case of negative exponents.
Since only refractive index values n ∈ [1.0, 1.5] are amenable to
our fabrication scheme, we truncate the values of the refractive
index distribution, n(u), to this interval. Ray-tracing results
through the truncated index distribution at perpendicular inci-
dence are depicted in Figure S2 (top). It can be seen that some
rays enter the forbidden region above the contact, in contrast to
the un-truncated case (Figure 1(b) of the main text), where light
rays would propagate along the transformed coordinate lines.
This leads to a slightly decreased performance of the truncated
distribution at perpendicular incidence. Obviously, the choice
of material for the forbidden region can influence the perfor-
mance of the invisibility structure. This is especially visible at
oblique incidence (Figure S2, bottom), where the hollow version
performs much better than the filled version of the graded-index
structure due to total internal reflection at the air core (see also
annual average improvements given in Table S1).

2. DERIVATION OF THE FREE-FORM SURFACE FUNC-
TION

In order to derive the free-form surface function y(x) (for x > 0),
we substitute x′ in tan(α) = x′−x

y by Equation (2) in the main
text. Applying Snell’s law, we find an implicit equation for the
surface inclination angle

β(x) = arctan
(

R1
y(x)

(
1− x

R2

))
. (S2)

Since tan(β) = dy/dx, the surface function y(x) can be ex-
pressed as

y(x) = y(0) +
x∫

0

tan (β(x̃)) dx̃. (S3)

(a) (b)
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Fig. S2. Ray-tracing simulations through the truncated re-
fractive index distribution (color-coded) with exemplary rays
(black lines) at perpendicular incidence (top) and at oblique
incidence (bottom). The forbidden region is filled with full
material (a) and air (b), respectively. In any case, rays enter the
forbidden region and hit the contact (black bar), i.e., cloaking
is not ideal. While for perpendicular incidence, filled and hol-
low version offer comparable performance, the graded-index
structure with air core outperforms the filled variant due to to-
tal internal reflection at the air core. For better clarity, partially
reflected rays are not drawn. The rays are traveling fully in the
xy-plane, i.e., ψ2 = 0°.
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We substitute y(x) in Equation (S2) by Equation (S3), leading to
an implicit equation for the surface inclination angle β(x),

R1

(
1− x

R2

)
tan

(
β(x)− arcsin

(
sin(β(x))

n

)) − y(0) =
x∫

0

tan (β(x̃)) dx̃.

(S4)
This equation can either be solved numerically or approximated
analytically for the case of small angles.

A. Numerical Solution
For the numerical solution of Equation (S4) we choose a recur-
sive approach. We split the interval from x1 = 0 to xN+1 = R2
into N equidistant sub-intervals of length ∆x. Thus, the starting
position of the ith interval is at xi = (i− 1) · ∆x, with i = 1..N.
Using this discretization, we can rewrite Equation (S4) for posi-
tion x = xi as

R1

(
1− xi

R2

)
tan

(
β(xi)− arcsin

(
sin(β(xi))

n

)) − y(0) = Ii , (S5)

where the right hand side is the integral

Ii =

xi∫
0

tan (β(x̃)) dx̃.

In order to calculate the integral, we split it according to the
recursion relation

Ii = Ii−1 +

xi∫
xi−1

tan (β(x̃)) dx̃ ≈ Ii−1 + tan (β(xi−1)) · ∆x.

Substituting Ii back into Equation (S5) we obtain a recursion
relation for β(xi) which can be evaluated numerically starting
at i = 2. The starting value β(x1 = 0) is computed using Equa-
tion (S5), where the right hand side I1 trivially vanishes. Once
the surface tilt angle β(xi) and the integral Ii are calculated for a
given position xi using the recursion formulae, they can be trans-
lated to a discretized surface height y(xi) by using Equation (S3)
in its discretized formulation, i.e., y(xi) = y(0) + Ii.

B. Analytical Approximation
If the angles occurring in Equation (S4) are assumed to be small,
i.e., α � π/2 and β � π/2, the trigonometric functions in
Equation (S4) can be substituted by their respective arguments.
Furthermore we use Equation (S3) in its differential formulation
to obtain a differential equation for the surface function

y′(x) · y(x) =
R1

1− 1
n

(
1− x

R2

)
, (S6)

which can be solved analytically. Thus, for small angles, we
obtain the surface function

y(x) =

√
y2(0) +

R1
1− 1/n

(
2x− x2

R2

)
. (S7)

Figure S3 compares the free-form surface function obtained by
the analytical approximation and the numerical solution for a
typical set of parameters. It has to be noted that, despite the good
agreement of the analytical approximation with the numerical
solution, we have used the numerical solution for all fabricated
structures and ray tracing simulations shown in this Letter.

x/R
2

0 0.2 0.4 0.6 0.8 1
1

2

3

4

5

numerical solution

analytical approximation

20

40

60

80

0

Fig. S3. Comparison of the numerical solution for the local
surface inclination angle β(x) (top) and the surface function
y(x) (bottom) of the free-form structure with its respective an-
alytical approximations. For the curves shown we assume a
periodic arrangement of contacts with width w = R1/0.6, an
areal filling fraction of 10 %, and a constituent material with
refractive index n = 1.5. Hence, the geometric parameters are
chosen R2/w = 5 and y(0)/R1 = 1, as for the fabricated sam-
ples and the ray tracing simulations. In this case, the analytical
approximation resembles the numerical solution very well,
despite slight deviations for x . 0.05R2.

C. Parameter Choice
Once filling fraction f and width w of the contact, as well as the
refractive index n of the constituent material of the free-form
surface, are given, there are three remaining parameters, R1, R2
and y(0), that define the geometry of the free-form surface. They,
however, cannot be chosen completely freely, but underlie the
following physical limitations.
Firstly, for the free-form surface to provide perfect cloaking
under perpendicular incidence, R1 must be larger than w/2 and
smaller than the period with which the contact grid lines are
arranged, such that

R1
w
∈
[

1
2

,
1

2 f

]
.

While for R2 the same upper limit applies, the lower limit is
given by the choice of R1:

R2
w
∈
[

R1
w

,
1

2 f

]
.

The choice of the second parameter, y(0), is limited by the fact
that the local surface inclination angle β(x) must be smaller
or equal to π/2 for all x ∈ [0, w/(2 f )]. Since β(x) decreases
monotonically (see Figure S3), this effectively imposes a limit on
β(x = 0), i.e., β(0) ≤ π/2. This is translated to a limitation for
the choice of y(0)/R1 by evaluating Equation (S4) at x = 0 and
β(0) = π/2, leading to a lower limit for the choice of y(0)/R1.
There is no physical reason for an upper limit for the parameter,
such that
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y(0)
R1
≥
[

tan
(
π

2
− arcsin

(
1
n

))]−1

is the only limitation regarding the choice of y(0)/R1.
We compute the annual average of the relative improvement (see
Section 4) including all reflections for different choices of param-
eters to find the optimum set of y(0), R1, and R2 for given filling
fraction f = 0.1, refractive index n = 1.5, and contact width
w. From the results of the parameter sweep it is evident that
the highest annual average is obtained when R2/w is maximal
while R1/w and y(0)/w are minimal, i.e.,

R1
w

=
1
2

,

R2
w

=
1

2 f
= 5 ,

y0
w

=
1
2

[
tan

(
π

2
− arcsin

(
1
n

))]−1
≈ 0.45.

For practical reasons, however, we choose slightly modified pa-
rameters for the fabricated structures. If one chooses the smallest
possible value for R1/w, small misalignments between the pre-
fabricated model contact and the free-form surface already lead
to degraded performance. Thus, we choose the slightly higher
R1/w = 0.6 instead of the optimum value. Furthermore, re-
ducing y0/w to the smallest possible value leads to a surface
inclination angle of 90° at x = 0, and thus a very sharp slit,
which is not easy to manufacture using DLW. For this reason,
we choose y0/w = 0.6 for the fabricated structures. Ray-tracing
simulations ignoring partial reflections show ideal performance
〈ζ〉 = 0.11 for structures with both the optimum and the modi-
fied set of parameters. Including partial reflections, the structure
with the modified parameter set exhibits an annual average rela-
tive improvement

〈
ζ ′flat

〉
less than 0.5 % lower than the structure

with the optimum parameter set.

3. DIRECT LASER WRITING

The proof-of-principle contact invisibility structures are fab-
ricated using a commercial direct laser writing (DLW) ma-
chine (Photonic Professional GT, nanoscribe GmbH, Eggenstein-
Leopoldshafen, Germany). We employ so-called Dip-In writ-
ing, i.e., the focusing objective is immersed in the photoresist
(IP-Dip, nanoscribe GmbH, Eggenstein-Leopoldshafen, Ger-
many). For both types of invisibility structures, the laser fo-
cus is scanned within the photoresist by means of a galvo-
scanner, enabling writing speeds of 30 mm s−1 and 50 mm s−1

for the graded-index and the free-form surface structures, re-
spectively. Adhesion of the polymer structures to the sili-
con substrate is enhanced by treatment of the substrate with
(3-Methacryloxypropyl)trimethoxysilane [2] prior to the DLW
step.
In order to realize the graded-index structure, we use the so-
called N-rod technique [3], where every rod along a predefined
axis of the woodpile consists of N individual lines with a spacing
of 0.1 µm in between. By adjusting N, the local volume filling
fraction of polymer vs. air is set up to match the effective refrac-
tive index given by the index distribution shown in Figure 1(b)
in the main text. The lateral lattice constant of the woodpile is
designed as a0 = 900 nm. Due to post-writing shrinkage of the
polymer, the actual rod distance is slightly lower at a = 800 nm.
Along the axial direction, the overall structure consists of 107.25

unit cells (429 layers) stacked with a design lattice constant of
c0 =

√
2a0 = 1.27 µm. Again, shrinkage reduces the total height

of the graded-index device from the theoretical value of 136 µm
to an actual value of 132 µm. Below the actual graded-index
structure, a 7 µm high solid polymer block is written to improve
adhesion of the device to the silicon substrate. In terms of writ-
ing times, a graded-index structure sized as the one shown in
Figure 3(a) of the main text lies near 1 h.
For the free-form surface structures, we write only the shell of
the structures with DLW, leaving the interior unexposed. Af-
ter washing away the unexposed resist outside of the written
structure with a commercial photoresist developer (mr-Dev 600,
micro resist technology GmbH, Berlin, Germany), we expose
the remaining unexposed resist with a 1.2 mW high-power LED
emitting at a wavelength of 405 nm. Using this core-shell writ-
ing approach the writing time reduces to below 10 min for a
typically-sized free-form structure (see Figure 3(b) of the main
text).

4. COMPUTATION OF THE ANNUAL AVERAGE IM-
PROVEMENT

We define the annual average relative improvement 〈ζ〉 obtained
by the invisibility structure as

〈ζ〉+ 1 =
energy deposited on active area with cloak

energy deposited on active area without cloak

=

∫
year (ζ(t) + 1) TaS(t)Idir(t) + Tcloak1Idiff(t) dt∫

year TaS(t)Idir(t) + TaS Idiff(t) dt
.

(S8)

Here, ζ(t) denotes the relative improvement compared to a
silicon solar cell without any cloaking or anti-reflective mea-
sures, but with the same areal filling fraction of the contact (see
Equation (S9)). Idir(t) is the direct irradiance on the solar cell,
and TaS(t) is the transmittance between air (n = 1) and Silicon
(n = 4) calculated using the Fresnel equations for unpolarized
light. Idiff(t) denotes the diffuse irradiance on the cell, with TaS
being the angle-averaged Fresnel transmission from air to silicon
and Tcloak being the angle-averaged transmission from air to sil-
icon with the cloaking structure in place. Isotropic illumination
is assumed, i.e.,

TaS =

π/2∫
0

TaS(ϑ) sin ϑ dϑ

Tcloak =
1

2π

2π∫
0

π/2∫
0

(ζ(ϑ, ϕ) + 1) TaS(ϑ) sin ϑ dϑ dϕ

To find the time-dependent angle of incidence Θ(t) needed to
calculate the time-dependent quantities in Equation (S8), we
compute the sun azimuth αs(t) and the sun height γs(t) (Fig-
ure S4). These quantities are calculated according to DIN 5034,
part 2 (Ref. [4]) for Karlsruhe conditions (latitude 49.007° N,
longitude 8.404° E, Central European Time (CET)). Any type of
wavelength-dependence is ignored.
We consider a solar cell that is tilted towards the horizontal by
inclination angle γc = 36° and rotated around the vertical axis
by azimuthal angle αc = 6° (Figure S4). This is the optimum
orientation for a non-tracking solar cell installed in Karlsruhe
[5]. To simplify calculations, we introduce three vectors with
unity length: the normal vector~n, the vector~s pointing towards
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the sun, and vector~e, which points up the slope of the solar cell
along its edge (see Figure S4). Like this, the angle of incidence
Θ(t) on the tilted solar cell becomes

Θ(t) = arccos (~s(t) ·~n) .

The time-dependent irradiances on the tilted plane, Idir(t) and

Fig. S4. Illustration of the orientation of a tilted solar cell with
contact grid lines (green). It has inclination γc, azimuth αc, and
normal vector~n. Vector~e points up the slope of the cell, along
its edge. The position of the sun is represented by the sun
height γs and the sun azimuth αs, or, alternatively, by vector
~s pointing towards the sun. The incidence angle Θ is the an-
gle between~s and~n. The contact grid lines are oriented along
direction ~g, perpendicular to the (~n,~e)-plane. Despite the visu-
ally different length of the vectors, all vectors are considered
normalized to unity length.

Idiff(t) are derived from the irradiance data for the horizontal,
Idir,hor(t) and Idiff,hor(t), respectively:

Idir(t) = Idir,hor(t) ·
cos (Θ(t))

sin (γs)

Idiff(t) = Idiff,hor(t) ·
1
2
(1 + cos γc) .

The irradiance data on the horizontal plane for Karlsruhe is
taken from the CM-SAF PVGIS database [5, 6].
We decompose Θ(t) into the component ψ1(t) lying in the (~n,~e)-
plane and the component ψ2(t) in the (~n,~g)-plane. We then
substitute ζ(t) in Equation (S8) by the values for ζ(ψ1(t), ψ2(t))
obtained in ray tracing simulations and evaluate the integrands
in Equation (S8) throughout one calendar year.

5. RAY TRACING SIMULATIONS

A. Method
The ray-tracing results shown in this Letter are obtained using
a home-built ray-tracing software. While the rays are traced in
three dimensions, the refractive index distribution is assumed to
be invariant along the third dimension, i.e., n = n (x, y). Here,
the coordinate system is chosen such that the directional vectors
shown in Figure S5 coincide with the coordinate axes, i.e.,

~e =


1

0

0

 , ~n =


0

1

0

 , ~g =


0

0

1

 .

The width of the simulation region is equal to one period of the
arrangement of contact fingers. Periodic boundary conditions
are imposed along this direction, i.e., rays leaving the simula-
tion region at the right end re-enter it at its left end and vice
versa. We launch N0 = 1000 equally spaced rays at the top of
the simulation region and trace them either through the spatially
truncated index distribution as depicted in Figure 1(b) of the
main text or through a free-form structure whose surface obeys
Equation (S4). The launch direction of the rays is given by the
angles ψ1 and ψ2. Both are measured towards the y-axis. ψ1 is
the component lying in the xy-plane, and ψ2 is the out-of-plane
angle, measured in the yz-plane. Using these definitions, normal
incidence is characterized by ψ1 = ψ2 = 0.
For the free-form surface design, ray-tracing is straight forward:
We calculate the intersection points of the rays with interfaces be-
tween regions with different refractive indices and apply Snell’s
law. This procedure is repeated until the rays leave the simula-
tion region at the top or the bottom.
In the case of the graded-index structure, the rays are traced
using a Newtonian approach [7], which is applicable for a con-
tinuously varying refractive index. At locations where discrete
index jumps occur (e.g. at the surface of the spatially truncated
index distribution), we replace the Newtonian method by Snell’s
law to correctly describe the transmitted ray.
For better clarity, for both situations partial reflections (R 6= 1)
are ignored by default. Total reflections (R = 1) like internal
reflections or reflections off the contact, however, are accounted
for. With this approach, the relative improvement ζ can be cal-
culated from the number of rays N transmitted into the silicon
substrate as

ζ =
N

N0(1− f )
− 1, (S9)

where f denotes the areal filling fraction of the contact. Thus,
positive values for ζ imply that more rays reach the silicon
substrate with invisibility structure than without it. Since the
maximum possible number of rays reaching the substrate is
Nmax = N0, the maximum possible improvement becomes

ζmax =
f

1− f
.

B. Including Fresnel Reflections
Ignoring partial reflections leads to results that are intuitive and
straight-forward to interpret. However, in order to assess the
performance of the invisibility structures in a more realistic way,
partial reflections must be included. This is done by assigning a
power value (initial value P0) to every ray. Upon hitting an inter-
face, the rays (with power Pi) are split into a transmitted and a
reflected ray that are then both traced individually. Their respec-
tive power values are Ptrans = TPi and Prefl = RPi. Here, T and
R are the transmittance and reflectance according to the Fresnel
equations (for unpolarized light). This procedure is repeated in
a recursive manner until every ray has left the simulation region.
To calculate the relative improvement including all reflections,
ζ ′, it is insufficient to simply count the rays that are transmit-
ted to the substrate (as in Equation (S9)), since they may carry
different powers. Instead, we have to consider the total power
transmitted to the substrate, Ptot. If we choose the same ref-
erence as in the calculation ignoring reflections, i.e. a silicon
surface with contact grid, the relative improvement ζ ′Si becomes

ζ ′Si =
Ptot

cloak
TaSP0N0(1− f )

− 1,
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where TaS denotes the Fresnel transmittance from air to silicon.
While this approach only requires one ray-tracing calculation
to yield the relative improvement, it has a drawback: Since the
invisibility structure exhibits a refractive index between that
of silicon and that of air, it trivially reduces reflectivity of the
whole arrangement. This effect is included in ζ ′Si, which is not
desirable. Instead, one should rather compare the performance
of the invisibility structure to the performance of a different
reference structure, e.g. a flat layer exhibiting the same refractive
index as the invisibility structure. This, however, requires two
ray-tracing simulation runs, to calculate the total transmitted
power for both the invisibility structure, Ptot

cloak, and the reference
structure, Ptot

ref . The relative improvement is then given as

ζ ′ref =
Ptot

cloak
Ptot

ref
− 1.

Its angular dependence for different types of invisibility struc-
tures is depicted in Figure S5. Firstly, it can be seen that the
qualitative behavior in the most important angular range (below
40°) does not differ much from the calculation results without
partial reflections (Figure 4 in the main text). The absolute value
of the relative improvement, however, is different. This is due
to the fact that the three types of invisibility structures exhibit
different average refractive indices, and thus lead to different
reductions of the total reflectivity of the overall structure. The
optimum refractive index to reduce the overall reflectivity with
a single additional layer is nopt =

√
nSi = 2 (ignoring interfer-

ence effects and multiple reflections). While the graded-index
structures have an average refractive index of n ≈ 1.3, that of
the free-form surface structure is n = 1.5, explaining the better
anti-reflection effect of the latter. For the encapsulated free-form
surface (see Section C), the reflectivity is reduced further, leading
to an even higher value for ζ ′flat.

in-plane angle of incidence (degrees)

0 10 20 30 40 50 60
-0.1

0

0.1

0.2

0.3

Fig. S5. Dependence of the calculated relative improvement
on the in-plane incidence angle ψ1, with ψ2 = 0°. Partial reflec-
tions are included for the graded-index structure (as depicted
in Figure 1(b) of the main text) with polymer core (red), with
air core (gray), the free-form surface (blue, as shown in Figure
2 of the main text) and the EVA-encapsulated TiO2 free-form
surface (green). The relative improvement is referenced to a
flat layer with homogeneous refractive index n = 1.5 and
thickness R2 (dashed line).

It has to be noted that referencing the performance of the in-
visibility structure to something else than the silicon substrate

also introduces slight changes to the computation of the annual
average improvement. Assuming a constant number of rays N0
(and constant initial power P0) across the two simulation runs,
the average relative improvement becomes〈

ζ ′ref
〉
=

energy deposited on active area with cloak
energy deposited on active area with reference

− 1

=

∫
year Ptot

cloak(t)Idir(t) + Tcloak Idiff(t) dt∫
year Ptot

ref (t)Idir(t) + Tref Idiff(t) dt
− 1.

Here, Tref is the angle-averaged transmittance through the refer-
ence structure, i.e.,

Tref =
1

2π

2π∫
0

π/2∫
0

(ζref(ϑ, ϕ) + 1) TaS(ϑ) sin ϑ dϑ dϕ,

where ζref (ϑ, ϕ) denotes the improvement obtained by the ref-
erence structure relative to plain silicon. For reference, typical
values of the annual average of the relative improvement for dif-
ferent invisibility structures, both ignoring and including partial
reflections, are given in Table S1.

Table S1. Annual averages of relative improvement ignoring
partial reflections, ζ, and of relative improvement referenced
to a flat layer with refractive index nflat = 1.5 and thickness
R2, including all reflections, ζ ′flat. Both quantities are given
for contacts with areal filling fraction f = 0.1 and width
w = R1/0.6.

invisibility structure 〈ζ〉
〈
ζ ′flat

〉
graded index (polymer core) 0.04 0.07

graded index (air core) 0.09 0.10

polymeric free-form surface 0.11 0.20

encapsulated TiO2 free-form surface 0.11 0.29

C. Influence of an Encapsulant Layer
Typically, real-world Si solar cells are encapsulated with an ethy-
lene vinyl acetate (EVA) or silicone layer which is flat on the
air-facing side. Characteristic refractive indices for such encapsu-
lants are around n ≈ 1.5 (Ref. [8]). Thus, a polymeric free-form
structure as proposed in the main text would not lead to suffi-
cient refraction of the incident light, as it exhibits a comparable
refractive index. The functionality of the invisibility structure
can be restored, however, by choosing a constituent material
with a higher refractive index.
As an example, we run ray tracing simulations for a free-form
surface made of TiO2 (n1 = 2.7, Ref. [9]) that sits on a silicon
wafer and is encapsulated against air in a layer with refractive
index n0 = 1.5 and thickness R2 (see Figure S6). Again, we as-
sume an areal filling fraction f = 0.1 of the contacts with width
w. The geometric parameters of the free-form surface are chosen
as R1/w = 0.6, R2/w = 5, and y(0)/R1 = 0.7. It has to be noted
that we substitute n in Equations (S4) and (S5) by the ratio n1/n0
to compute the free-form surface function for the encapsulated
invisibility structure.

Ignoring reflections the calculated relative improvement is
ζ = 0.11 over the full in-plane angular range from 0° to 70°,
exactly as for the configuration without encapsulant layer. The
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Fig. S6. Refractive index maps (color-coded) with exemplary
rays (white) as obtained by ray-tracing, showing the encapsu-
lated free-form surface (left) and the corresponding reference
structure (right). The refractive indices are chosen n0 = 1.5 for
the encapsulant material (yellow), n1 = 2.7 for the constituent
material of the free-form structure (red), and n2 = 4 for the
silicon substrate (gray). For clarity, partially reflected rays are
not drawn. The rays are fully traveling in the xy-plane, i.e.,
ψ2 = 0°.

angular dependence of the relative improvement including par-
tial reflections, ζ ′flat, is depicted in Figure S5. While showing
a qualitatively similar behavior as the free-form surface at air,
the absolute value of the relative improvement is higher for the
encapsulated variant. This is due to the better anti-reflection
effect provided by the two-layer structure. As all four curves are
referenced to the same reference structure, namely a flat layer
with refractive index n = 1.5 and thickness R2, the reduced
reflectivity leads to a higher value of ζ ′flat.
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